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1. INTRODUCTION

1.1 Overview

This report summarizes the research conducted in the second phase of this

three-year research and development program directed toward the analysis

-and evaluation of myoelectric signals (MES) as indicators of operator

-. alertness and piloting workload. The purpose of the study was to

investigate the efficiency of stochastic models such as autoregressive

(AR), autoregressive-moving-average (ARMA), and autoregressive integrated

moving average (ARIMA) models in characterizing the MES under different

levels of task-imposed burden.

The three year program built on the research performed by Madni (1978,

1981), Graupe and Cline (1975) and Graupe, Magnussen and Beex (1977) who

established the feasibility of stochastic models in characterizing sampled

myoelectric signal waveforms. In particular, the work of Madni has

established the feasibility of characterizing myoelectric signals under

varying levels of muscle tension and physical fatigue via stochastic

models. This program has explored methods for characterizing the

myoelectric signal under varying mental stress levels of the human

operator.

The research conducted provided a firm analytical and experimental basis

for model-based feature extraction by providing techniques for algorithmic

improvement in accuracy, by investigating critical issues in pattern

variations due to individual operator's behavioral differences, and by

providing techniques for symbolic interpretation. The program culminated

in the development of a prototype MES analysis system and guidelines for

its application in assessing operator stress and/or alertness in various

* -l piloting activities.

•0IZ . .. / . . . i . . . . : - . i> . . : - - .



60 1.2 Problem Statement

The definition and derivation of objectives measures for assessing

workload, attentional demands, or operator alertness in specific piloting

tasks has been an area of investigation by several researchers for more

than three decades. Myoelectric signals (MES) have been the subject of a

search by some researchers (Kennedy and Travis, 1947; Travis and Kennedy,

1947; Kennedy, 1953) for a physiological indication of alertness in

piloting tasks. The results of these experiments demonstrated that there

i - appeared to be some correlation between MES properties (e.g., spike

amplitude, zero crossings) and human alertness. However, the use of these

properties as an indicator of alertness level was never successfully

incorporated in a practical setting primarily because of the excessively
high false positives in certain tasks. That is, diminished alertness has

I been identified in many situations when the subject was clearly alert. One

plausible explanation for this unreliability in "answers" extracted from

MES signatures is that the information content of the original MES waveform

is underutilized. In other words, the reliability of features, the

information content of the features, and the feature extraction process are

critical to the success of the alertness/workload level discrimination

process.

1.3 Program Objectives

Several of the program objectives were met in the first phase of the

program. These included:

(1) The development and implementation of stochastic model-based

signal processing and pattern analysis approaches within the

overall framework of the data acquisition and processing

system.

1-2
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(2) The derivation of model structure, feature extraction, and

parameter identification processes for constructing MES-based

indicators of alertness/workload.

- (3) The development of an experimental plan and a representative

task simulation and interface.

(4) A pilot experimental investigation.

(5) The evaluation of MES features in terms of their relevance to

operator alertness level and/or mental load.

The second phase of the program built on the work resulting from the first

phase by enhancing model parameter estimates and algorithm accuracy,

- investigating experimentally the performance of the model-based feature

extraction methods, determining pattern responses to different task

characteristics and individual differences, and establishing a rule-based

- -- framework for interpretation of the feature parameters. Program objectives

met during the second phase of the program included:

o(1) The expansion of the ARIMA-based feature extraction process to

provide better estimates of the model parameters and to

improve computational accuracy of the algorithms.

(2) Improved data collection system to provide speedy global and

automatic pick-up of MES signals.

(3) Expansion of the task simulation to include critical air pilot

situations where the alertness of the aircrew to high-stress

and multiple-task conditions is essential.

40
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(4) Identification of range of feature variations and model

accuracy/validity.

(5) Development and experimental use of the extended model/system

in extracting indications of operator alertness/load level.

(6) Development of guidelines for operational application of the

MES analysis system in air piloting tasks. The guidelines

should include: methods of measurements; model structuring;

parameter estimation and interpretation techniques; and

specification of the system's control and display

requirements.

1.4 Technical Approach

Stochastic modeling and time series analysis methods have been extensively

used to statistically model the relationship between the amplitude of the

signal at different points in time along the entire time history. In this

model, the amplitude fluctuations along the timeline are treated as a

stochastic process. Stochastic models are particularly well suited as a

temporal feature extraction tool for time varying random signals. Such

features, because of their high information content, have proven to be

diagnostic indicators in applications where purely spectral or ad hoc

feature extraction methods have failed (Madni, 1978). The key hypotheses

underlying the use of stochastic models as a feature extraction method for

alertness level identification were that: (1) at least one of the features

will be relatively constant and repeatable for the mental load category and

task during which the signal was recorded; and (2) at least one of the

nearly constant features for each alertness category/load condition will be

distinctly different for each level thus enabling identification of the

category.

1-4
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The stochastic modeling approach for characterizing bioelectric signals is

most applicable to model physiological data which possess some or all of

the following characteristics:

(1) The data trace is noisy, i.e., data points show random

W fluctuations in amplitude and are thus amenable to being

modelled as a random sequence.

(2) The classification problem is restricted to a finite,

previously established, number of categories.

(3) Simpler features extraction methods such as power spectrum

analysis, root-mean-square-value estimation, and amplitude

level coding fail to provide good separation among the

classes.

Other examples of physiological signals amenable to stochastic modeling

include: (1) Steady State Electro-encephalograms (EEGs); (2) Visual Evoked

Response; and (3) Electro-oculograms (EOGs).

1.5 Findings

The research performed during this three-year program revealed several

* Vfacts consistent with past research in this field. First, surface

myoelectric signals tend to be much too "noisy" to extract consistently

stable (i.e., invariant) features from the waveform. Consequently,

reliability of the MES signatures was found to be inadequate for reliable

discrimination. Past research in this area where relatively stable

features were acquired were based on the use of intramuscular Basmajian

type electrodes (Madni, 1978). With surface electrodes, trends were

observed in approximately twenty percent of the subjects tested. However,

the trends were not robust enough to make conclusive assessments. With

respect to diagnosticity, the MES pattern associated with the different

1-5
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levels of task difficulty could not be easily separated. Since great care

was exercised in electrode placement and contact and in task design, we

attribute these results to two key factors:

(1) The change of electrodes from Phase I of the program to Phase

II was motivated by shape and size consideration. However it

* "is conceivable that the resulting MES patterns were

contaminated by extraneous signals even though the signals

looked clean and devoid of 60 hertz interference. The main

reason for this conclusion stems from the significantly better

results in terms of stable features achieved during Phase I of

this program. This argument can account in part for the lack

of reliability in the MES signature derived via ARIMA model

analysis.

(2) The selected muscle sites, i.e., the frontalis and the

trapezius may not be as correlated with operator alertness/

U t workload levels as originally envisioned. This argument

accounts in a large part for the relatively low diagnoscity of

:-" - MES signatures in distinguishing reliably among the different

*task loading conditions.

The implications from this three-year research program are two-fold.

*Surface myoelectric activity is not a reliable measure of operator

alertness. During Phase I, the first autoregressive coeffocient of the

ARIMA model revealed a significant correlation with task difficulty level.

During Phase III, the 7 weights did not show the same trend. Intramuscular

*- electrodes, on the other hand, that do pick up more reliable signatures

have obvious drawbacks. Post hoc analysis of the experimental data

0 revealed that the total number of experimental subjects which were

constrained by program scope and size were inadequate in terms of producing

* -~ a statistically significant difference in perceived stress between the

single and dual-task groups. A detailed description of findings is

presented in Section 6 of this report.

1-6
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2. BACKGROUND

Fii

2.1 Rationale and Hypothesis

The MES, within the context of human performance and workload, has been

studied by various researchers over the last three decades. Within the

- context of human performance, the MES can be potentially used to provide a

measure of either activity of the muscles or the tension of the muscles.

qWhen workload estimation is involved, data processing of some kind has to

be performed on the raw MES data. This processing can range from

conventional signal processing and filtering methods to temporal feature

extraction and pattern analysis methods.

A number of studies have been carried out to demonstrate the practical

value of MES as a measure of task workload and performance quality. Among

the earliest research is that of Kennedy and Travis (1947, 1948, 1949) who

found that the level of the integrated MES recorded over the supraorbital

facial area was closely related to vigilance and tracking performance.

Lucaccini (1968) observed similar changes in the integrated forearm flexor

muscle MES during simple and complex visual tasks. He also reported that

* Ithe average intrasubject correlations between MES and performance were

significant in both tasks (r = .21 and .30 in simple and complex tasks,

respectively). Stern (1966) found that integrated neck MES rose initially

and fell thereafter during easier and more difficult (lower signal

* frequency) versions of a simple visual task.

It seems from these results that integrated MES voltage is one of the

better predictors of vigilance performance, but it has not been universally

0 accepted that MES varies directly with vigilance task performance. Eason,

Beardshall and Jaffee (1965) interpreted their results as indicating that

sympathetic activity decreases along with Central nervous system arousal

2
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and vigilance, but that somatic activity increases as part of a
U compensatory process. Groll's (1966) conclusions were essentially the

same. Yet, judging from their results and the contradictory findings of

others, muscle tension, like performance, may reflect both the processes

underlying declines in vigilance performance and those acting to counteract

* wit.

For these reasons, stochastic modeling approaches which examine the entire

temporal signature, i.e., the whole latency domain, are preferable to ad

hoc isolated-feature dependent methods. It is expected that the use of

stochastic model-derived features in conjunction with single-features such

as P300 component amplitude and latency (e.g., Israel et al, 1980)

potentially offer a diagnostic and reliable direction for the assessment of

internal operator states.

Jex and Allen (1970) found that rectified and suitable filtered MES

recorded from the forearm of subjects showed a decrease in amplitude when

subjects changed from a resting to a tracking state. These researchers

also found that grip pressure increased with an increase in tracking

difficulty. Sun, Keane and Stackhouse (1976) and Stackhouse (1976) found

that MES from the forehead and the forearm were correlated with task

F loading in a variety of aircrew tasks. Madni (1978) found a deterministic

correlation between MES reorded during isometric contraction of the deltoid

* •muscle at various load levels and the associated MES stochastic model

parameters.
a

From the foregoing, it appears that MES can potentially provide reliable

correlates of operator states such as alertness levels or load; however, in

order to achieve this goal, computer-based signal analysis and feature

0 extraction methods must be systematically applied to the MES recordings.

Stochastic modeling approaches which examine the entire temporal signature,

i.e., the whole latency domain, are preferable to ad hoc isolated feature-

dependent methods. It is expected that the use of stochastic model-derived

2
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features in conjuction with single-features such as P300 component

amplitude and latency (e.g., Israel, Wickens, Chesney and Donchin, 1980)

-potentially offer a diagnostic and reliable direction for the assessment of

internal operator states.

Even with stochastic modeling approaches, the transient nature of ERPs

"",  -require that a fairly general form of a stochastic model be used, i.e., one

*.°- that can at least accommodate nonstationarity in the mean of the waveform.

* Since ARIMA stochastic models are designed to handle nonstationary means,

they offer a particularly promising framework for extracting informative

features from ERPs.

2.2 Stochastic Models

Stochastic modeling or time series analysis (Box and Jenkins, 1970) have
* -been extensively used to model the statistical relationship between the

amplitude of a signal at any point in time and the preceeding amplitudes

along the time history. The amplitude fluctuations along the time line are

treated as a stochastic process. The future course of the process is

. presumed tn be predictable from information about its past.

0Before describing these models, the notation employed will be summarized.

Let

..... Xk-lXkXk+l .........

be a discrete time series where Xi is the random variable X at

time i. We denote the series by [X].

Let be the mean of [XI, called the level of process.

2-3
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* Let [XI denote the series of deviations about ; that is,

. 4 ,. Xi=Xi - '

*A..

- Let [W] be a series of outputs from a white noise source with a

mean zero and variance j2.

. Let B be the "backward" shift operator for the deviation series

such that

Hence, Bmxk = Xk.m

- Let 7 be the backward difference operator for the deviation

series such that

S7Xk=Xk-Xkl = _(-B)xk

Hence, 7 mxk=(l-B)mxk

The dependence of the current value xk on the past values of x and

- w can be expressed in different ways giving rise to several

different models.

2-4
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(a) Autoregressive (AR) Models. In this model the current value
I, of x depends on the previous p and x and on the current noise

term w. Thus,

xk=alxk- + a2xk-2 + .... + apxk-p + wk f
or

p
xk = . aixk-2 + wk

i=1

-1

The series [XI as defined above is known as the autoregressive

pcocess of order p. The name "autoregressive" arises from the

model's similarity to regression analysis and the fact that
the variable x in an AR model is regressed on previous values

of itself.

(b) Moving Average (MA) Model. In the equation for the AR model,

xk1 can be eliminated from the expression for xk by

substituting

Xk-1 = alxk-2 + a2xk-3 + .+ apXk-p -1 + Wk-1

The process can be repeated to eventually yield an equation

for xk as an infihite series in the w's. A moving average

model allows a finite number q or previous w values in the

2-5
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expression for xk. This formulation explicitly treats the

series as being observations on linearly filtered Gaussian

noise. A MA process of order q is given by

p

Xk= biWk-i + Wk
i=1

(c) Mixed Model: Autoregressive-Moving Average (ARMA) Model. To

achieve flexibility in the fitting of actual time series, this

model includes both the AR and the MA terms. A (p,q) ARMA

model has the form:

p P

xk = 3 aixk-i + wk - 3 biwk-i
i=1 i=1

In all three models described above the process of generating the

series is assumed to be in equilibrium about a constant mean

level. Models characterized by such an equilibrium condition

are called stationary models. In certain time series data,

the level P does not remain constant, i.e., the series is

nonstationary. The series may, nevertheless, exhibit

homogeneous or stationary behavior after the differences due

to level drift have been accounted for. It can be shown that

such behavior can in certain instances be represented by an

autoregressive-integrated-moving-average (ARIMA) model.

2-6
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! D (d) Autoregressive-Integrated-Moving-Average (ARIMA) Model. The

general (p,d,q) model has the form

p p
1. 7d xk = ai vdxk i + wk biWk i

1 - =1 i=1

where xk is the original time series

7 is the backward difference operator

d is the number of differencing operations performed

on the original data

p is the order of the autoregressive terms
) q is the order of the moving average terms

If Yk = Vxk

p p
Then Yk =  aiYk-i+Wk - biWk-i

This model is referred to as a general (p,d,q) model referring

to a general pth order autoregressive, dth data differencing,
qth order moving average process (Box et al, 1970).

2-7
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2.3 ARIMA Models in MES Characterization

The feasibility of ARIMA Stochastic Model Identification for feature

* extraction was explored by Madni (1978). The key elements of this study

are provided in the following paragraphs.

The experimental data consisted of MES records from the deltoid muscle for

different isometric contraction levels. These ranged from 0% to 100%

(maximum), where 100% tension is defined as 100% of the force generated at

maximum effort, not 100% of MES. The primary assumption in this experiment

is that an X% run corresponds to X% of muscle tension which is proportional

to abduction, and that the only muscle involved in abduction is the

deltoid.

The results of the spectral analysis performed on the experimental data

revealed a gradual but definite shift of power to lower frequencies with an

increase in muscle contraction. The total power of the signal was found to

lie below 2500 Hz. The most significant shift of power to lower

frequencies with increasing muscle tension was observed in the frequency

band that contained ninety percent of the total power.

ARIMA models were fitted to the MES data recorded for each contraction

level. The ARIMA parameters were fitted across the n trials for each

contraction level. It was shown that AR terms of the a vector do not

change significantly for the 1%, 5%......,50% tension levels. However,

the AR coefficients for the 100% tension level is quite different from

those for all other tension levels (both in sign and magnitude). The

contraction level ranges (within which the AR coefficients of the ARIMA

pattern vector are relatively stationary) that resulted from this

experiment were:

2-
{m2--
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(1) 1% through 50% (or 'low') contraction range

U (2) 50% through 100% (or 'high') contraction range

Each of these two contraction ranges can be represented by an average

-pattern vector. A question that arises here is how one can determine,
online, the underlying contraction levels from the MES spectral signature.

* The results from the spectral signature analysis reveal that 90% of the

* cumulative power was below 400 Hz for the high tension case, but was above

400 Hz for the low contraction level case. This fact provided a useful

criteria for determining whether a given MES pattern should be compared to

the 'low' contraction pattern vector or the 'high' contraction pattern

vector. Details of the online recognition rule may be found in Madni

(1978).

0I
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3. SYSTEM IMPLEMENTATION AND EXPERIMENTAL SET-UP

3.1 Overview

The system architecture was designed and implemented in parallel with the

first series of experiments for assessing the "goodness" of model-derived

features in terms of their relevance to operator alertness/workload levels.

The primary tool used for performing this assessment in both series of

experiments is a computer-based stochastic signal processing and pattern

recognition algorithm described in earlier sections.

This section discusses the behavioral issues being investigated through the

use of model-based feature derivation/extraction of workload correlates.

Workload correlates were primarily gathered through a task simulation based

on the Criterion Task Set (CTS) workload test battery developed at AFAMRL

(Shingledecker, 1983). The task simulation was altered to some degree to

accommodate the experimental hardware constraints and to control the

experimental and behavioral variables during the task. Each subject was

presented with controlled workload tasks along cognitive processing and

motor task dimensions. As the subject performed the various tasks, the MES

data was recorded at rest, at the beginning, and near the end of task

execution. At the conclusion of each task, model outputs, subject

performance, and subjective rating comparisons were made between levels of

task loading and among the various task dimensions.

3.2 ARIMA Model Identification of MES

The key research problems forming the basis of this study and underlying

the use of stochastic models as a feature extraction method are described

in the following paragraphs.

3-1
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U, The fundamental hypothesis forming the basis of this study is that MES

recorded from selected muscle groups are correlated with internal states of

the human operator (e.g., alertness level or mental load) and that a

suitably selected/designed feature extraction method is capable of

uncovering the underlying operator state in terms of invariant features

associated with the MES. It was our hypothesis that stochastic model

characterization of the MES waveforms is potentially capable of "capturing"

features that are both repeatable and diagnostical. Repeatability implies

that there is at least one parameter in the stochastic model

characterization of MES data that is constant or near-constant for each

underlying level of alertness or load in a given task. Diagnosticity

implies that these nearly invariant features are sufficiently different for

each level of alertness, thereby allowing identification of the underlying

* operator state. The specific stochastic model selected for MES

characterization is the ARIMA model.

As shown earlier, an ARIMA model for a general time series has d levels of

differencing, p autoregressive coefficients, and q moving average

coefficients as shown in the equation below:

Sdzt dZt - pdZt_p=at-eat_ - .. qat q

where .dZut

where Zu is the dt h difference of the time series at time u

au is the zero mean, normally-distributed random noise at time u

0'- oi l: the ith autoregressive coefficient
E1 to

is the it moving average coefficient

Determination of p, d, and q is a three step procedure. The first step of

the ARIMA modeling as provided by Box & Jenkins (1970) is to identify p,d,

and q. The specific software module associated with this step calculates

3-2
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autocorrelations and partial autocorrelations for different levels of data

differencing. These autocorrelations and partial autocorrelations provide

an insight in selecting p,d, and q of the ARIMA model. To determine d, one

looks at the autocorrelations for a given level of differencing and

observes whether or not they "die out" rapidly. If they do, the given

level of differencing is adequate; if not, additional differencing

operations are required until this constraint is satisfied. The smallest

level of differencing for which the autocorrelations die out rapidly is

taken as the optimal level of differencing, d.

To determine p and q we look at the autocorrelations and partial auto-

correlations for the selected level of differencing. Box and Jenkins

summarize this approach as follows:

"Briefly, whereas the autocorrelation function of an

autoregressive process of order p tails off, its

partial autocorrelation function has a cutoff after

) lag p. Conversely, the autocorrelation function of a

moving average process of order q has a cutoff after

lag q, while its partial autocorrelation tails off.

If both the autocorrelations and partial autocor-

*relations tail off, a mixed process is suggested.

Furthermore, the autocorrelation function for a mixed

process, containing a pth order autoregressive

component and a qth order moving average component, is

0! a mixture of exponentials and damped sine waves after

the first p-q lags. Conversely, the partial auto-

correlation function for a mixed process is dominated

by a mixture of exponentials and damped sine waves

after the first p-q lags."
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Once p, d, and q are selected, we proceed to the second stage of the model

identification process. The purpose of the second stage is to come up with

initial estimates of the autoregressive and moving average parameters.

These initial estimates are then used by the third stage of the model in

generating final estimates of the autoregressive parameters. The result of

this three-stage process is a feature vector consisting of parameters that

parsimoniously characterize the original MES time series data.

* -3.3 ARIMA Software (AUTOBJ) and Functional Description

The ARIMA modeling of MES was based on a recently released program, AUTOBJ

(an automatic Box & Jenkins modeling procedure) developed by Automatic

Forecasting Systems, Inc. for use on an IBM PC/XT with an 8087

floating-point chip. The previous system, the COSMOS/UNIX system, did not

support a floating-point hardware. Consequently, it was necessary in phase

S-i one of the effort to develop a batch mode program that allowed the

experimenter to specify up to 25 files representing 25 experimental

sessions and process all the records in these files. AUTOBJ, the software

on the IBM PC/XT with the supporting floating-point hardware does not

require this batch processing. The key features of AUTOBJ are described in

Table 3-1.@1
TABLE 3-1

KEY FEATURES OF AUTOBJ

Computes the optimal level of differencing.
Easily handles a mixed model (ARMA) (the in-house system

generally set q to zero).

0 .Discards o and e weights of low significance.

Computes - weights as opposed to AR parameters for

comparison.

,-
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U The models obtained for the software used during phase one were generally

AR models whose coefficients were directly comparable, while the models

*i produced by AUTOBJ that have differing values of p, d, and q may not be

directly compared. This problem of incompatibility was solved by using the

model to generate r weights and using the = weights for comparison rather

than the model feature vector.

Any ARIMA (p,d,q) model can be expressed as an infinite series of weights

as follows:

Take the general ARIMA (p,d,q) model,

I (- (B) (1-B)dzt=(1-Oq(B))at

U Divide both sides by (1-H(B)) to yield,

-(l- (B))(1-B)dZt= at

, (1-eq (B))

0

The resulting polynomial coefficients of the potentially infinite order

polynomial in B represent the - weights. If q=O, then the polynomial is of

order p and identical to the 6 p(B) polynomial. It is impurtant to

0 truncate the 0 weights after some number such as (p+d+q) to parsimoniously

represent the time series.
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With its floating-point hardware support and automated identification
9 W procedure, the AUTOBJ program was a very powerful tool for the purposes of

this investigation.

AUTOBJ allows efficient implementation of Box & Jenkins models and produce

time series identifications. Starting with raw data, the program's

algorithm follows the model building methodology described by Box and

-."- Jenkins -- that of tentative model identification, parameter estimation and

diagnostic checking (for the purposes of this project, only the model

identification was employed). While requiring only minimal input by the

user, the program is quite flexible in allowing for optimal user control.

AUTOBJ provides a quick, convenient and powerful means for developing ARIMA

models for the MES time series data.
0

To be more explicit, AUTOBJ consists of two stages. In the first stage the

.- system queries the user for information concerning the data. Stage two

involves the execution of the statistical ARIMA modeling analysis based on
- P the data introduced in stage one. The output of the program is a detailed

printout of the feature vectors calculated from the modeling process of the

-- time series identification. These vectors are later used to evaluate the

correlation of the MES signature to the performance measures from the

ovarious tasks.

3.4 ARIMA Model Implementation

The AUTOBJ software package was used to extract the time series

identification from the experimental data. It took approximately 30

minutes of run-time to process each file consisting of 1000 data points.

The resulting printout for two subjects is shown in Appendix D. The

modeling results include univariate model parameters (such as the mean and

the ARIMA coefficients), residual statistics and pi-weights.

" 3-6
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* 3.5 Signal Integrity Plotting Package

The first series of experiments during phase one did not incorporate

explicit means of verifying the integrity of the signals being measured.

In order to alleviate this problem, a graphics package was developed on the

IBM XT to plot the data sampled from both the frontalis and trapezius

muscles.

The graphics package, written in C programing language, is customized to

the data formats of each new series of experiments. The first one hundred

characters of each data file is reserved for a descriptive header. This is

followed by 1000 integers in ASCII format.

Three variables are presented to the user with this package: vertical

reduction, horizontal magnification and the number of data files to plot.

The maximum screen resolution that could be achieved on the IBM XT using a

Tecmar Graphics Master Card was 640x200. The flexibility resulting from

the vertical reduction and horizontal magnification allows the user to

scale the graph within these screen limits. The vertical reduction allows

the user to contract the graph along the y-axis in order to ensure that it

fits within the screen boundaries. The horizontal magnification allows the

user to expand the graph along the x-axis, where the number of data points

plotted equals 640/(horizontal magnification). Either one or two data

files are plotted along with their respective descriptive headers.

3.6 Communication Interface

Two separate communication interfaces are used in the experimental setup.
The interface between the data acquisition system and the IBM XT is used

both for the transfer of messages regarding sampling variables to the data

acquisition system and the transfer of the sampled data itself. The

interface between the Apple lle and the IBM XT is used for the control of

the tasks presented to the subject.

3-7
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4 M The line between the IBM XT and the data acquisition system is an IEEE-488

bus. This line can transfer data at rates up to three hundred megabytes

per second. The IEEE-488 interface to the data acquisition system is built
into the system while the interface to the IBM XT had to be purchased

separately. This consists of a plug-in card and related software which can

be used with applications written in 8086 assembler, Basic and C.

- The connection between the Apple Ile and the IBM XT is a standard RS-232
line configured for 9600 baud, even parity, 1 stop bit and a 7 bit word.

3.7 Hardware and Instrumentation

3.7.1 System Selection. The COSMOS computer initially selected for

system control and data analysis functions was found to be too limited for

our purposes in a number of areas. First, the available AID cards for the

* COSMOS (used for amplifying and digitizing the analog myoelectric signals

for input to the computer) were too limiting in the control of parameters

such as amplification gain, sampling frequency, number of data input

channels, etc. Additionally, the lack of graphics capability of the system

prevented us from observing the actual signals acquired for integrity. The

general unavailability of peripheral devices (e.g., floating-point

hardware, graphics hardware) for this particular machine initially forced

us to design the experiment around hardware limitations. Therefore, a

decision was made to re-analyze the hardware requirements and replace the

COSMOS with a different system which offered enough flexibility to handle

most any contingency which could occur over the course of the program.

Among the requirements of this system were (1) floating-point hardware

support, and (2) graphic display capability. Initially, an additional

requirement was the availability of an appropriate "C" compiler so that the

ARIMA model software used in the first phase of the program could be easily

transported to the new computer. This requirement later proved unne~cessary
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since the computer chosen to replace the COSMOS had available to it a

S Pcommercial model package called AUTOBJ which automated the modeling

procedure and improved on some inadequacies of the original software.

AUTOBJ was suitably modified for Automatic Forecasting, Inc. for use as a

feature extraction tool for our purpose.

An IBM PC/XT microcomputer was selected for both data acquisition and

*i - executing the application software. While this 8088 based machine, in

general, is not as powerful as the 68000 based COSMOS UNIX system, it

offered the advantage of widely available peripheral hardware and software

items which were added resulting in an application-specific configuration.

The system (Figure 3-1) was configured as follows:

*

,..: .PRINTER

, DISPLA Y
. -. ~SCREENAPL][

ELECTRPPES

,LJO YST]ICK RS-232 IBM PC/XT

FIGURE 3-1.
SYSTEM CONFIGURATION
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0

- RS-232, IEEE-488, and Centronics interfaces
- 8087 numeric coprocessor

- Trans Era MOAS 7000 data acquisition system

- Tecmar graphics card

- Amdek high resolution monochrome monitor

- Apple lie with graphics card, serial port, joystick

-Okidata dot matrix printer

3.7.2 Acquisition System. A data acquisition system (DAS) was required

to sample the myoelectric signals. The system had to impose as few

limitations as possible regarding sampling speed, resolution, variable

sampling windows, storage, etc. Furthermore, cost was to be kept to a

minimum within program budgetary allocation.

Myoelectric signals have a bandwidth ranging from 25 Hz to approximately

5Khz. However, all the necessary information for our purposes lies within

the bandwidth of 25 Hz to 500 Hz. Thus, in accord with Nyquist's sampling

theorem the DAS was required to sample at a minimum of 1000 samples per

second.

The amplitude of myoelectric signal obtained from a standard electrode

varies from 100 V to approximately 5mV. A system which is not sensitive

enough for this range of signals would need to have the signals

" preamplified before they are digitized. This in turn would increase the

cost, the complexity and the noise introduced into the system.

.- A minimum of 2 analog inputs had to be present in the system. True

simultaneous inputs would be an advantage in that any possible correlation

between the 2 channels could be investigated with more accuracy.

The system required a software package which made available to the user an

easy and fast method of CALLing assembly language subroutines from C to

handle the 1/0 and sampling functions.
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, Many systems were investigated for our purposes. However, only one system

fulfilled all the important requirements. TransEra's Model 7000-MDAS is a

stand-alone data acquisition system based on the Motorola 68000 micro-

processor. The basic processing and Control Unit consists of: 16 slot

chassis, basic power unit, IOMHz 68000 processor card with timing module

and real-time clock, 2 RS-232 serial ports, 1 IEEE-488 interface port, 22K

of static RAM and a 64K firmware module.

Two upgrades purchased with the system were a 16-bit A/D, D/A conversion

card which includes 8 programmable gains from 1 to 128 and a low-level

+O.1V, differential analog input module which provides up to 4 isolated

simultaneous inputs.

This system has a resolution of approximately 3.05 V per bit with a gain

" "of 1 and has a maximum sampling rate of approximately 48000/(number of

channels) samples per second.

3.7.3 Electrode Selection. As discussed in our interim report (Madni,

Chu, Otsubo and Purcell, 1984), the Motion Control electrode packages were

originally selected for use based on the high-performance characteristics

_ of their integral signal pre-amplifier. However, these electrodes were

physically too large to allow for placement on some potentially useful

sites (e.g., forehead). Additionally, the sensitive CMOS circuitry used in

the design of the pre-amplifier was extremely susceptible to static

discharge induced failure with no simple means of failure indication short

of experiencing signal degradation.

It was decided that silver/silver chloride "button" type electrodes along

with an external high-performance pre-amplifier would be more suitable for

- our purposes. The characteristics of the VIVO Metric silver/silver

chloride electrodes in summarized in Table 3-2.
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TABLE 3-2

CHARACTERISTICS OF VIVO METRIC

SILVER/SILVER CHLORIDE ELECTRODES

- Sensor Dia.: 4mm

- Housing Dia.: 7.2mm

- Overall Height: 6mm

- Electrode Cavity: 1mm deep

- Lead: 1m shielded cable

3.7.4 Electromagnetic Interference. Our preliminary study had indicated

that 60 Hz interference was contaminating the myoelectric signal. To this

end, we constructed a Faraday cage (a grounded, wire-mesh cage) within the

room in which a subject could sit while performing a task, essentially

shielding him from extraneous R-F interference. Any remaining EMI was

removed by using differential electrodes and by grounding the subject.
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4. EXPERIMENTAL STUDY

4.1 Overview

* The phase one series of experiments were designed to assess the "goodness"

of stochastic model-derived features pertaining to operator alertness and

workload levels. In that study, behavior variability and hardware

limitations prevented totally reliable measures to be gathered from

subjects. To alleviate these problems, more stringent experimental design

.- and methodologies were developed to improve experimental control and

circumvent the hardware limitations observed during the initial series of

experiments.

This section describes the new experimental procedures and the tasks

involved in deriving workload correlates. The rationale for changing the
tasks, variables and procedures from the original series of experiments,

was so that workload performance and perceived stress could be measured

more reliably with model-derived MES features.

4.2 Experimental Hypotheses and Test Procedure

The major effort of this program was to be able to predict perceived

workload levels from model-derived MES features. To predict workload

levels, these MES features have to be reliable and diagnostical to infer

appropriate operator states. Two hypotheses, which are characterized as

"reliability" and "diagnosticity," were investigated in this study. These

hypotheses are:

01 - o Reliability - A minimum of one set of values in the ARIMA model

provides invariant or near-invariant pattern values for each

subject within a predetermined underlying level of mental load

for a given task category, thus achieving "reliability".

4-1
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P o Diagnosticity - Each level of task difficulty has its own

distinct pattern, providing a "diagnostic" feature for predicting

operator wokload/altertness with model-derived MES features.

.) To ascertain the reliability and diagnosticity of MES-derived features,

several issues were investigated. The first involved detecting at least

one set of values in the ARIMA model for each underlying loading/alertness

* level, subject, muscle site, and task level. To determine this, model

coefficients and their related pi-weights were examined for invariance

across multiple samples within trials and across multiple trials. If

values were found that satisfy the necessary invariant conditions, they

were then considered "reliable". These reliable features must also have

been sufficiently different in magnitude for each level of the task, to

exhibit the attribute of "diagnosticity."

4.3 Experimental Tasks

The original series of experiments were based on simulating a subset of the

-.Criterion task Set (CTS) workload test battery that was developed at AFAMRL

- (Shingledecker, 1983). These experiments were based on the degree to which

*they satisfied the requirements of: (1) validity and reliability, (2) flex-

ibility and quantifiability, (3) memory, (4) mental mathematics/reasoning,

and (5) choice reaction time. Unfortunately, data from only one subject

was used to validate task parameters. Thus, the tasks used in the original

experiments were not stringently pretested and validated to correlate to

*the desired levels of "low" and "high" workload levels; the low difficulty

*; - level tasks may have been too easy for the subjects, generating boredom,

- and the high levels may not have actually represented a higher task-imposed

0 - of "stress". There were observed differences in performance and subjective

ratings between the high and low levels of task difficulty, but all

subjects seem to exhibit boredom and fatigue due to the long experimental
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sessions and the repetitive task performance required of them. Thus, in

the pilot set of experiments, instead of experiencing different levels of

stress, subjects were experiencing boredom and fatigue.

Additionally the original tasks were discrete, independent task components,

1 rather than integrated task situations to match the Criterion Task Set

-I -(CTS) under development at AFAMRL. This minimized the external validity of

the tasks.

To alleviate these problems, a new set of tasks was developed to:

o Minimize the fatigue and boredom that resulted from the first

series of experiments;

o Achieve a higher level of external validity;

o Represent validated task levels of low and high stress.

The new set of tasks was developed, based on the objective that when given

U )a primary task at a comfortable pace, adding a secondary task will increase

the level of difficulty of the total task. Thus, the perceived stress

experienced by the subject should theoretically increase. We first

analyzed the basic CTS and selected a subset to employ as our experimental

0 tasks.

The overall CTS included the following task components:

0 (1) Perceptual tasks

o Probability monitoring task

o Auditory monitoring task

o Visual target search task
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,* (2) Central Processing Tasks

o Memory tasks - memory update, memory recall

o Manipulation 1nd comparison tasks - linguistic processing,

mathematical computation, spatial pattern identification

o Reasoning tasks - analogical reasoning and grammar

o Planning and scheduling - flight assessment and supervisory

control

, (3) Motor tasks

o Critical tracking task

* A subset of the CTS was selected from existing tasks previously researched

and validated at AFAMRL. These task dimensions included a motor task

(critical tracking) and a perceptual task (auditory monitoring).

The two tasks used in this series of experiments are described in the

following paragraphs.

Critical Tracking Task

60
The critical Tracking Task was developed as the primary task. In this task

the subjects were required to track a target on a computer display screen

by controlling a "site" object with a joystick. The subject was directed

to track and surround the target with the site, as the target randomly

moved around the screen. Performance was based on the average distance

* between the site and target over the entire session. The more control the

suoject maintained over the tracking task, the lower the averag2 distance

0 'recorded. This task was developed to represent the desired level of "low"

stress.
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Critical Tracking Task With Added Auditory Monitoring Task

The same Critical Tracking Task was then combined with a secondary auditory

monitoring task. This second task required the subject to respond to an

auditory tone by pressing a button on top of the joystick. The tones were

W intermixed so that one tone represented signals and a different tone

represented "noise". The subject was required to distinguish the signals

from the "noise" by pressing the button only when the signal was heard.

- The subject was required to respond within 1/2 second from the time the

signal was presented. If no response was made within that time, an

omission error (a "miss") was recorded. If the subject pressed the button

when no tone was presented, a commission error (a "false alarm") was

recorded. This monitoring task was presented to the subject with the

primary critical tracking task, thus representing a more stressful task

than the primary task alone.

* ~.4.4 Experimental Variables

The experimental design utilized a within-subject repeated measures design.

The following independent variable was tested:

O ' o Task loading - two levels of difficulty or "stress"

(1) Critical tracking task only ("low" stress)

(2) Critical tracking task + auditory monitoring tasks ("high"

stress)

The dependent variables gathered from the varying task loading situations

were:
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L o Performance measures

(1) average distance between the site and target for the critical

tracking task

(2) auditory monitoring responses, (errors of omission and

- comi ssion)

o Subjective measures of effort and stress - gathered from

post-test questionnaires

o MEIS data gathered through the data acquisition system

In the initial series of experiments there were two task categories and two

levels of task difficulty.

o Task category - two types

(1) Central processing tasks

* ~ (2) Motor tracking tasks

o Task loading - two levels of difficulty

o (1) Low load

(2) High load

We attempted to stay within the same criteria established in the first

series, i.e., CTS implementation utilizing two levels of stress. The only
major change was the integration of the task categories of a perceptual

(auditory) and a motor tracking task together, to achieve a higher level of
external validity. We also employed the use of secondary task loading to

0 validate the assumption that presenting an additional task places higher

cognitive load on the subject, thus increasing his perceived "stress."
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This probe-reaction-time technique has been utilized with notable success
in uncovering resource demands for various perceptual/motor and cognitive

tasks (Ells, 1973; Posner & Bois, 1971; Posner & Keele, 1969).

To validate the two levels of "stress", pilot studies were performed.

Initially, five test subjects were presented seven varying levels of

difficulty for the critical tracking task. They were given 30 seconds to

* perform each level, from the easiest (Level 1) to the most difficult (Level

*7). Each test subject practiced and became familiar with all the levels.

Each was then given the opportunity to move the level of difficulty up or

down by pressing the up-cursor (increases the difficulty level) and

down-cursor (decreases the difficulty level) on the computer keyboard.

They were told to reach the level at which they felt most comfortable, i.e.

not too easy and not too difficult. We assumed that this level would

represent the "low" stress level. Three of the test subjects chose level

4, while two subjects chose Level 5, thus we established Level 5 as the

level of "low" stress, to minimize the problem of boredom and fatigue that

was found to occur in the first series of experiments. We again tested the

pilot subjects on the task only at Level 5, and all agreed that it was

cimfortable level. Those who initially selected Level 4 as the comfortable

level could not tell the difference once given the task at Level 5, thus,

we maintained Level 5 as the established level of "low" stress.

* - To find the appropriate level for the secondary task of auditory

monitoring, we again conducted pilot studies in which the same test

subjects performed the same critical tracking task (Level 5) with varying

* - levels of auditory monitoring (Levels 1-7). Test subjects again were able

* to practice the critical tracking plus auditory monitoring task to become

familiar with all the levels. Next they were given the opportunity to

control the levels of auditory monitoring by pressing the up-cursor

(increasing frequency of signal and noise presentation) and the down-cursor

* (decreasing frequency of signal and noise presentation). Subjects were
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n ~ told to maintain the level at which they felt comfortable, i.e. not too

easy and not too difficult. All subjects chose Level 4. This task was to

represent the level of "high" stress, thus we increased the actual auditory

monitoring task to Level 5. We attempted to increase the difficulty by two

levels (to Level 6), but discovered that the signals were presented in a

predictable pattern, this made it easier instead of more difficult to

.- respond. Consequently, we maintained the auditory presentation of Level 5

as the established level of "high" stress.

We then presented both tasks to all test-subjects, gathered performance and

subjective data, and found that there was an observable difference between

the "low" stress and "high" stress task performances based on the average

distance from site to target on the critical tracking tasks, and on the

subjective responses to the amount of effort exerted and stress perceived.

4.5 Muscle Site Selection

U . Exist ng literature (Madni, Chu, Otsubo, and Purcell, 1984) suggests a

number of muscles (frontalis, trapezius, splenius, temporalis, masseter,

brachioradialis) which undergo sporadic, potentially diagnostic activity

during high workload situations. Our new data acquisition system gave us

the capability of acquiring data from multiple muscle sites, and our new

electrodes were of a small enough size to permit judicious placement.

However, the additional processing time involved in modeling the data from

, * each additional muscle restricted us at this time to a maximum of two

sites. The frontalis and trapezius muscles were chosen.

4.6 Subjects and Procedures

. In this phase of the program, 12 male subjects were recruited from the

,-.- local university, and from the available Perceptronics pool of volunteer

subjects. Subject ages ranged from 19-35 years old. All had at least a
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high school diploma and some experience with using computers. A 2X2

~Kg within-subject repeated-measures design was employed. Each subject
performed the two tasks twice. After they completed each task, they were

given a questionnaire (See Appendix C) to complete regarding their

subjective evaluations of the effort expended and the difficulty of the

- tasks.

in this phase of the program, several major changes were implemented.

Before performing the actual experiment, several pilot studies were

conducted to investigate the validity of the tasks to be presented. Upon

examining the results of the pilot studies, we were able to substantiate

the expected differences between the two levels of task difficulty based on

task performance and perceived stress.

The original series of experiments attempted to represent low and high

levels of difficulty by isolated, discrete tasks. By presenting subjects

with different tasks, there was no way of validating whether the tasks used

were actually of varying degrees of difficulty or whether they were just

different in task type. that is, it was more clear whether the tasks

really fell as different points on "level of difficulty" continuum. To

correct for this undefined task variability, the method of secondary task

loading was used; an auditory monitoring task was added to the primary

critical tracking task. This procedure insured that if there was a

difference between the primary task ("low" stress task) and the primary

plus secondary task ("high" stress task), then it must be due to the

additional cognitive load imposed by the secondary task (see Knowles,

1963).

We also recruited 12 subjects participate in the experiment, compared to

only 3 subjects in the initial phase so that the statistical power of the

experiment would be increased. The results from only three subjects may
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have been due to chance. Increasing the number of subjects would provide a

greater probability that the results would demonstrate statistically

significant differences.

1 The total time required of each subject was 1 to 1-1/2 hours. This is

vastly different from the two to three sessions required of them in the

initial series of experiments. Reducing the amount of experimental time

minimized the probability that the subjects were bored and fatigued with

the experimental procedure, and consequently, reduced the probability that

physiological measures would be confounded.

Each subject was asked to read the instructions (Appendix A) explaining the

experimental procedure. Subjects were encouraged to ask questions as they

read the instructions to ensure that they understood the tasks. They were

then requested to read and fill out a "personal information fact sheet" and

"consent to act as an experimental subject" form. The active electrode

assembly was then attached above the (frontalis muscle), and to the

subject's upper back (trapezius muscle), running parallel to the muscle
fibers. A third "ground" electrode was positioned near the elbow. All

electrodes were placed on the subjects' non-dominant side (right-handed

* subjects had the electrodes positioned on the left arm, and vice versa).

Subjects were given an orientation and practice session lasting 5-10

minutes to minimize the learning effect that ould occur during the

* experiment itself. The practice session was concluded when the subjects

produced comparable scores on two successive trials for each task. the

subjects were then instructed to sit comfortably upright in the chair and

cautioned against moving the side of their bodies to which the electrodes

were attached. At this time, a sample time series of data was recorded for

subjects representing their "At rest" state. At the end of each task,

subjects were asked to fill out a questionnaire of subjective ratings and

post-experimental comments. After completing this form, subjects rested

* for a few minutes before the next task was presented. All subjects were

* - given two trials for each task in a counterbalanced order.
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a i Each experimental task lasted 200 seconds. During each trial, data sampled

at 1 Khz was collected in 1000 msec windows spaced 30 seconds apart in the

last 45 seconds of the trial. This data collection scheme allowed us to

-" evaluate feature reliability both within and between trials.

4.7 Performance Measures

The performance measure of average distance between site and target was

gathered so that one common performance measure could be compared between

both tasks. In the original series of experiments, the performance

measures for low and high-stress tasks differed, making it difficult to

reliably determine the meaningfulness of performance differences observed.

The performance measures collected during the experimental trials were:

Critical Tracking Task -

o Average distance between site and target - the average distance

measured over 10 second intervals between the random target and

the site controlled by the subject

Critical Tracking Task + Auditory Monitoring Task -

o Average distance between site and target - the average distance

0measured over 10 second intervals between the random target and

the site controlled by the subject

auditory response accuracy - the correct responses (hits),

0 omissions (misses) and commissions (false alarms) made by

subjects to the auditory "signals"
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' These performance results were recorded and printed for each task (Appendix 0).

Subjects were also requested to fill out a questionnaire after each task

was completed. the questionnaire required that subjects rate (on a sliding

scale) various items related to: (1) their perception to task difficulty,

and (2) their perceived level of effort (Appendix C).

The results of the performance measures and subjective ratings along with

the statistical and pattern analysis are discussed in Section 5.2.
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V 5. EXPERIMENTAL RESULTS AND DATA ANALYSIS

5.1 Overview

£ This section discusses the subjective responses, objective performance data

and objective MES measurements that were collectively analyzed in order to

* identify ARIMA features for varying levels of stress and/or operator

workload. Included is a discussion of the trends between tasks that were

identified and conclusions that were drawn from the ARIMA model-based

analysis.

5.2 Task Performance and Subjective Ratings

Analysis of task performance was made by comparing the average distance

between the site and target between the two tasks. These results indicate

that an observed difference exists between performance on the two tasks

(Figure 5-1). Despite the fact that these differences were statistically

* * significant (paired 5-test, p > .05), 75% of the subjects' performance

dropped from the single to the dual task situation. With an increased

number of subjects, and perhaps a greater discrepancy in difficulty levels

o £ of the single and dual tasks, it is reasonable to expect that statistical

significance would have supported the resulting observed performance

differences. The observations showed that 9 subjects out of the 12

performed worse on the dual task (critical tasking + auditory monitoring

4task). This observed difference may be an indication that the dual task

* may have been perceived as more stressful.

Questionnaire responses were then analyzed to ascertain differences between

the "perceived stress" levels on the two tasks. The pertinent questions

- relating to perceived stress were:
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o "What level of effort did you expend?"

o "How challenging was the session?"

o "How much strain did you experience during the session"

Comparisons between the two tasks exhibited significant differences in

response for these questions (paired t-test, p < .005; Figure 5-2). These

differences indicate that increased "perceived stress" was experienced

during the dual task, even though there were no statistically significant

differences in task performance.

5.3 Results of MES Feature Extraction

MES sampling was conducted a total of nine times for each subject, once at

rest before any of the tasks began and twice during each task for both

* - muscles. Each file of MES data was stored and subsequently plotted on the

* CRT. Samples of these measurements are shown in Figures 5-3 and 5-4 for

subjects JJJ and AXC.

The ARIMA analysis, a result of the AUTOBJ software implementation, was

- -conducted for each of the files stored. Sample outputs for subject JJJ and

AXC are shown in Appendix 0. Modeling results included univariate model

parameters, residual statistics and pi-weights for each file. The

univariate model parameters included autoregressive, moving average and

trend constant parameters. For each of these a factor, lag, coefficient

and F-ratio value was extracted. The residual statistics included the sum

of squares, mean square, R-squared, degrees of freedom and number of

residuals. Univariate models were expressed as pi-weights (weighted sum of

the past plus a random shock). The general form of the model expressed by

the pi-weights is:

Z(t) = Constant + Pi(1) Z(t-1) + Pi(2) Z(t-2) ... + Pi(n) Z(t-n)

5-4
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where:

n is number of lags
I pe t is time

Pi(n) is the value of lag at n

Z(t) is the pi-weight at time t
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6. DISCUSSION OF FINDINGS

Based on the data collected from the Box & Jenkins ARIMA analysis, we were

able to compare the MES features between tasks, between trials, between

muscle sites and between the rest period and each of the two tasks.

Trends were found in two individuals as a result of careful analysis of the

data. Subject JJJ exhibited a definite trend with the frontalis muscle

between tasks 1 and 2. Table 6-1 shows the significant pi-weights for this

individual with respect to the task, window and trial. A conclusion which

can be drawn from this information is that the pi-weights are generally

significant for task 2 and not for task 1. Subject AXC exhibited a trend

between tasks 1 and 2 also but with the trapezius muscle. Table 6-2

identifies the significant pi-weights with respect to the task, window and

trial. Pi-weights for this subject were generally significant in task 1

and not in task 2.

The subjective data indicate a statistically significant difference in

perceived stress between the single and dual-task groups. These results

are supported by observed differences in performance for 9 of the 12 (or

£ 75% of) the subjects. These performance differences, although in the

expected direction, did not reach statistical significance.

The first obvious explanation for the lack of statistical significance

between the single and dual-task performance measures is the relatively

small number of experimental subjects tested. It is clear that the greater

the number of subjects tested, the greater the power of the experimental

manipulations, and consequently, the greater the probability that small

differences may reach statistically significant levels. Since we knew that

a large number of subjects would not be accessible, given the practical

constraints under which this study was conducted, we employed a within-
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TABLE 6-1

SIGNIFICANT Pi-WEIGHTS (JJJ)

Subject: JJJ (Frontalis)

Significant

Pi-Weights

Task Window Trial 5-9

1 1 1 None

1 2 1None

11 2 None

12 2 None

2 1 1 5,6

2 2 1 5,6,7,8
0A 2 1 2 None

2 2 2 5



T ELE 6-2

SIGNIFICANT Pi-WEIGHTS (AXC)

Subject: AXC (Trapezius)

Significant

Pi-Weights

Task Window Trial 20-25

E_

" -" 1 1 1 20,21,22,23

- 1 2 1 20,22,23,24,25

1 1 2 20,21,22,23

1 2 2 20,21,22,23

2 1 1 20,21,22,23,24,25

2 2 1 20,21,22,23,24,25

2 1 2 None

2 2 2 None
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subjects experimental design, which generally provides a more powerful

experiment with less subjects than a between-groups design. It is

apparent, however, that even under those conditions, the number of subjects

tested was inadequate. The fact that three-fourths of the subjects tested

did show performance differences between the single and dual-task

situations does suggest, however, that using a greater number of subjects

may have produced results that were statistically significant.

The experimental tasks used in this study were selected because they are

classical tasks. That is, motor tracking and auditory vigilance tasks, in

combination, are used throughout the skilled performance literature to

"load" the subject and increase task difficulty levels. It is well

documented, the time-sharing literature, that imposing a secondary task onI
a user increases the attentional demands on subjects. In theory, then, the

dual-task is more difficult to perform than the single task alone. This

has been noted to increase the level of stress under which the subject

performs. Because the tasks used were chosen based on their successful use

in similar research in the past, the lack of statistical significance of

the tracking performance measure in this study requires an alternative

explanation.

L A more theoretical but certainly plausible explanation for this lack of

statistical significance may be advanced based on a cognitive model of

allocation of attention (see Kahneman, 1973). While performing the dual-

task, the subjects could, in theory, have allocated their attention to the

primary tracking task, even though they were instructed that maintaining

performance on both primary and secondary tasks was critical. Because the

primary (tracking) task was inherently more "entertaining" (more like a

video game) and hence perhaps more motivating than the secondary (signal

detection task), it is distinctly possible that subjects ignored the

instructions and allocated their attention to the primary tracking task.

That is, subjects may well have allocated just enough attention to the

6-4
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u , secondary task of signal detection to perform to their own levels of

perceived adequacy, rather than trying to perform well on both tasks. If

this was, in fact, the case, then it would be logical that some decrease in

primary task performance, and hence observed differences, would be the

result, but that those observed differences would not have been profound

enough to reach statistical significance. This may also explain why the

differences in MES readings associated with the dual-task situation also

* . .were not very pronounced.

To determine whether subjects did, in fact, "satisfice" (i.e., perform to

their perception of adequacy) in performing the secondary task, one could

look at the signal detection performance of subjects in the dual-task

*situation. Although no "control" group performing signal detection only

was employed in this study, one could still expect that if subjects were

allocating enough attention to the signal detection task, performance

should have been above chance. Stated differently, signal detection

performance at or below change levels for the subjects in the dual-task

group would indicate that the subjects did not allocate to the secondary

task the attention it demanded.

To determine the viability of this explanation, a post-hoc analysis was

performed on the raw signal detection data from the subjects in the dual-

task situation. The results indicate that all subjects performed below

chance levels. On the average, subjects signal detection responses were

only correct 13% of the time (see Table 6-3). Three subjects had more

incorrect than correct responses (14-18% more incorrect responses), and

only two subjects managed to achieve over 40% in correct responses. This

may suggest that the subjects performed the dual-task at their level of

adequacy by allocating less attention to the secondary task then it called

for, and thus, maintaining a consistent level of performance for the

primary task.

6-5
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TABLE 6-3

SECONDARY TASK AVERAGE CORRECT AND INCORRECT
RESPONSES FROM TOTAL SIGNALS PRESENTED

SUBJECTS TRIAL 1 TRIAL 2 AVERAGE

*WG 14% 23% 19%
(more correct responses)

NI -10% -17% -14%

(more incorrect responses)

BN 41% 40% 41.5%

JM 20% 34% 27%

GN -19% -16% -18%

RR 16% 24% 20%

DS 50% 41% 46%

AC -2% 4% 1%

JJ -16% -21% -19%

" FH -37% -19% -28%

DN 33% 31% 32%

JF 12% 18% 15%

Summary: On the average, subjects achieved 13% more correct responses than
incorrect responses (see Section 6.0 for a discussion)
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Lg~ Appendix A

Software Specifications

Overview

The two software packages involved in the myoelectric signal acquisition

Aw consist of one system for the IBM XT and one for the Apple Ile. The IBM XT

is used to control the newly acquired data acquisition system, the

experimental parameters and the Apple Ile. The Apple H~e is used to

present the tasks to the subjects, to record subject responses and to print

a subject performance record.

Apple Ile System

There are two tasks present on the Apple Ilie which are both written in

Apple GraForth. When not performing either task or printing out a

performance record, the Apple waits for a task number to be received from

the IBM.

Task 1 is a straightforward tracking task. This task consists of a

crosshair which moves randomly at a constant rate about the screen along

both x and y axes. The subject has joystick control over a circle on the

screen. The object is to keep the crosshair as close to the center of the

circle as possible for the 3.5 minutes duration of the task.

Task 2 consists of task 1 along with a simultaneous auditory task. At

random intervals, a short tone is emitted from the Apple's speaker. Sixth

per cent of the time, this tone will be high pitched. At this point the

subject has exactly 0.5 seconds to respond to the tone by pressing the

joystick button. The system then responds with a much higher tone to
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acknowledge the button press. Forty per cent of the time however, the tone

will be low pitched. Should the subject respond to this lower tone, it is

recorded as an error.

A restriction is placed on the high tones. Once a high tone is emitted

there will not be another high tone for at least 0.5 seconds.

Nevertheless, any number of low tones can be sounded within this period.

This is done to allow the subject time to respond to the tone.

Also, once the joystick button is pressed, it is not polled again for the

next 0.5 second. This is done in order to remove the possibility of a

double press for a given tone.

Recording of Performance

In both tasks, a running average of the distance from the center of the

circle to the center of the crosshair is calculated. Every ten seconds
this is stored in a buffer and the average distance is reset to zero.

In task 2, responses to the tones are also recorded. These are groupeu

into three categories: good responses, false responses and no responses.

A good response occurs when the joystick button is pressed within 0.5

seconds after a high tone is emitted. A false response is recorded when

the joystick button is pressed but there was no high tone emitted within

the previous 0.5 seconds. Finally, a no -esponse occurs when 0.5 seconds

passes after , high tone is emitted without the joystick button being

pressed. As with the average distance, every ten seconds, the tone

responses are stored in a buffer and reset to zero.

Upon teriinating the isk, the Apple prints its resporse bu'fers and

returns to its initial daiting state.
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IBM XT System

The system on the IBM XT is completely written in C and consists of four

primary functions.

- o Control the Apple Ile.

o Interface with the data acquisition system.

o Plot the data files received from the data acquisition system.

U - o Interface with the experimenter.

Control of the Apple lie

The IBM communicates with the Apple Ile over an RS-232 line to inform it to

start a particular task and to find out when this task is finished. When

the IBM system wants to start a particular task, it sends the desired task

number (1 or 2) to the Apple. The Apple, upon receiving this number,

prompts the subject for his name and instructs the subject to press the

joystick button when he is ready. The Apple then returns the task number

to the IBM to indicate the start of the task. Once the task is finished,

the task number is once again sent to the IBM to indicate this fact.

Interface with the Data Acquisition System

The IBM communicates with the MOAS 7000 data acquisition system over an

IEEE-488 (GPIB) bus to set up the sampling parameters, to inform the MOAS

7000 to sample data and to download files to the IBM.

The only sampling parameters involved are the sampling rate, the sampling

duration and the channel selection. The MOAS 7000 is instructed by the IBM

to sample two channels specified for the frontalis and trapezius muscle

sites for one second at a rate of 1000 samples per second.

A-4



Once, at the beginning of the experiment and at exactly 2.75 and at 3.25

minutes into each task, the MDAS 7000 is instructed to sample the t6o

channels and to send the two files to the IBM for storage.

"* File Format Convention

- * The data files consist of a 100 character descriptive header followed by

1000 integers in ASCII format. The descriptive header is in the following

format:

Name/Data/Time/Task# /Window# /Trial# /Muscle Site

The blanks are filled in with the appropriate values. The windows are

numbered as follows:

0 - At rest

1 - 2.75 minutes into the task

2 - 3.25 minutes into the task

The name of each file begins with the three initials of the subject, where

the letter "X" is used if the subject has no middle name. This is followed

oby a letter representing the muscle site: 'a' for frontalis, 'c' for

trapezius. If the file represents a sample at rest then the string

'atrest' is appended to the filename. Otherwise, the task number, the

window number and the trial number are appended to the filename in that

orcjr along with a '.dat' suffix.
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Plot the Data Files

The data plotting package on the IBM is further explained in section 3.5.

Whenever the IBM receives a set of two data files from the MDAS 7000, it

plots the first 300 points of each file simultaneously with a horizontal

magnification of 2 and a vertical reduction of 31. This remains on the

screen until a new set data is received, or a new task begins.

-Interface with Experimenter

When the program, 'OPERA', is executed on the IBM, the screen clears and

the system prompts for the subject's name. Once a valid name with three

initials is typed, the subject is sampled at rest, and the two files are

plotted and stored and the following appears:

Practice first? (y/n)

n Should the experimenter wish the subject to go through a practice round

before any data is taken, the experime~nter responds with 'y'. Otherwise,

the actual experiment will begin.

U If, however, a practice round is desired, the following prompt appears:

Practice task #

Valid responses to this are a '1' and a '2'. Any other responses will be

rejected. The task number is then send to the Apple lie which then

presents the appropriate task to the subject. Once the subject has entered

his name and pressed the joystick button, the task number is sent back to

the IBM. The IBM acknowledges with:

Task # started
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6 ~ where the blank is filled in with the appropriate task number. The IBM

then sits in a waiting state until the task number is once again received

from the Apple indicating that the task has terminated. Upon receiving the

character, the IBM types:

Continue practice? (y/n)

at which point it will repeat the entire practice sequence if the response

is affirmative. Otherwise, the actual experiment begins and the following

appears:

Trial #

The experimenter replies with either a 1' or a '2'. The system responds

with:

U ) Task (1,2)

The experimenter replies with either a '1' or a '2' depending on the task

difficulty desired. The task number is then send to the Apple and the IBM

types:

Waiting for task to start on Apple Ile...

Upon receiving the task number from the Apple, indicating the start of the

task, a timer is started and the following appears:

Task # started

where the blank is filled in with the appropriate task number.
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At exactly 2.75 and 3.25 minutes into the task, the data acquisition system

Lreceives a message from the IBM to sample the two channels specified for

the frontalis and trapezius muscles for one second at a rate of 1000

samples per second. The acquired data is immediately sent to the IBM.

Once received, the two sets of data are plotted simultaneously for the

experimenter to check the signal integrity.

When the task is terminated, the Apple indicates this, as in the practice

- session, by sending the task number to the IBM. The IBM acknowledges this

by typing:

Continue? (y/n)

If the response is affirmative the entire process after the practice

session is repeated. Otherwise the program terminates.

A-8

4'

" . - '- i ,



APPENDIX B

INSTRUCTIONS FOR EXPERIMENTAL SUBJECTS

B-1



APENI B

INSTRUCTIONS APEDXFOR EXPERIMENTAL SUBJECTS

This experiment is part of a program of continuing research at

Perceptronics in human (pilot) performance and decision making. The

purpose of this particular experiment is to analyze ways in which human

operators' myoelectric (muscle) signals respond and how a computer might

help to determine an operator's mental state via these signals. You are an

integral part of this research since your performance provides the baseline

data for predicting operator performance, and estimating the effectiveness

of computer-based analysis techniques.

Tasks Overview

There are two types of tasks that you will be asked to perform in the

experiment. They are: (1) motor (control) tracking task, and (2) motor
plus perceptual (control + auditory) task. Each task will be approximately

3-1/2 minutes each. Please concentrate on the task, as your responses and

performance will be closely monitored and scored. There will be a

predetermined pay-scale for performance levels, thus the better you do, the

more money you will make. At the end of each session, you will be given a

questionnaire to fill out. Information on these questionnaires will not be

used to rate your score, so please use your unbiased judgment to answer

those questions.

The following paragraphs describe the two types of tasks.

Motor (Control) Tracking Task. In this task, you will see an object called

the "target" which moves freely around the screen. You will be asked to

track the target by controlling another object, called the "site" with a

joystick. The objective is to track and surround the target with the site
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as the target continually moves around the screen. Performance will be
Imeasured as the average distance between the site and target over the

entire task.

Motor + Perceptrual (Control + Auditory) Task. This task incorporates the

first motor tracking task with a perceptual, auditory task. In addition to

the first motor tracking task, you will be required to respond to high

tones by pressing the orange button on the top of the joystick whenever a

high tone is heard. There will be low tones and high tones--you must

. .discriminate between the two tones and only respond to the high tones.

Overall performance will be measured as (1) average distance between the

site and target and (2) good responses, false responses and missed

responses to the high tones.
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• . iOW r 2

How much did you enloy the session?

otat a;;-c-~

4 How cna)e -ngirg was tne session?

ot at ai1 r r-rl,)7

'. . : . : . :i:-::;i: : : - : : : • . _.  -.- :_ : :: : - , ... -i :"A
* , .. , , - '.- . . , • - . -"



Sw
- t Io you i:hrnk yO"ir score was for tn s .

V "I A e

- ow rt Cnq .* .entOin ,,d you 2ut for,n for this tas.

erv v er

"c.ew exciting was the tasK?

not at all ext e-e ,

8 H-ow much strain did you experience during the ses~son,

none verV

-enerai ooservations and comments.

I.

n . . -



APPENDIX 0

SAMPLE PRINTOUT AND ANALYSIS

WITH PERFORMANCE MEASURE PRINTOUT

D-1



PERFORMANCE MEASURE PRINTOUT

SUBJECT: MICKEY ODEGAARD

LEVEL AVERAGE DISTANCE

1 2

1 2

2 i2

2 1

2 5

4 3 11

3 12

3 14

4 19

4 22

4 23

5 27

, 5 47

5 28

6 36

6 33

6 34

7 32

7 56

7 52

-.

• - .,1



PERFORMANCE MEASURE PRINTOUT

SUBJECT: JAY MARTIN

AVERAGE GOOD NO FALSE

LEVEL DISTANCE RESPONSE RESPONSE RESPONSE

1 21 0 3 3
1 31 2 0 0

'S1 20 1 0 0

2 20 2 2 2

*2 15 3 1 0
2 17 1 2 2

3 17 5 2 2

3 15 7 2 2

3 19 8 0 0
4 19 9 2 2

4 22 6 0 0
4 12 11 2 2

5 19 8 0 0
5 21 7 3 2
5 21 3 0 2



-7 .w -

Appendix D (Cont'd)

AUTOBJ SAMPLE PRINTOUT (SUBJECT: AXO)

mODE-LI,\G RE-SJLTS FOR TIM~E SERIES AXCAATRE

*DA7P Z = XCAATRE 10000. 1000 OBSERVATIONS

DIFERENCING ON Z NONE

EPCS-ING OF

jN7VAR7A7E mODE._ )RANiE-RS

;rCTOR LAG3 COEFFICIENT T RAT:O

I M;=AN -. 12557E#0iO
*2 Au7GREGRESSIVE 1 a .17341E-+00 4.,94

3 QLJTREESSIVE 1 2, . 0123E-00 6. LRO
4 AUTOREGRESSIVE 2 10 Q 478_':9E-#0() 16.06
5 AU70REGRESSIVE 2 30 .23716E.00 7.99
6 MlOVING AVERAGE 1 1 .48090E-s00 14.64
7 MOVING AVERAGE 2 70 -. 14074E-00 -4. 32

T-E RESIDUA~L STATISTICS

SUH = ~jRE . 4lo84E-u1 DEG~REES OF ;7REEDuM : :E('
* mEAN SOLARE . 42796E-04 NUME .R OF R=SIDUALS :967

:i SJaJARED .512395-.00

THE Pi WEIGHTS

Er OX-JE\r'INS MODELS CAN B--. EXPRESSED AS A WE1G-TED Su~ OM-
* _' A RPNDCM S"Gcp". DEFINED AS T-.E 01 WEIGHTS, MODELS EXPRESSED _-N T

E=_R S RE US=_=;l~L i OR ;rORECASTING AND/OR COMPARISON TO OTHEJ; TYMES 0" MF.DE-S

GE NE R .:-R' OF 7"E' MODEL EXPRErSS-D BY ---P "E~S

Z Crtsan Pi(1 * Z(t-1) -l Pi(2) *Z(t-2) .. + Picrv) *Z(-.-r,

-A



*~A 7-E P: EsT

ConstanT - 38640E-0:'I
Pl( J.) -. 4eC)9 E--')
P-1 4 ) 4 06 7:' C

1Pi ( 3) -9ff 358 4E --C) t
Pi( _4) -. 1903E-c(:
Pi( 5) -. 943-'

Pi( 6) -. 44oESE-01
1Pi( 7) . 1170E-(:)
Pi( 8) -. 1'8EO
PiC 10) -. 46075E-')C()
Pi( 11) 2 1 E+():
Pi( 12) -. 2822-,E-(.
Pi( 13) .82697=-0
Pi( 14) .3976SE-0 I
Pi ( 15) 19125E-o)I
Pi( 30) -. 27 +c

iPi( 31) -. 11405E-400
Pi( 32) -. 1372C0E-CU-
Pi( 32) i 4 1 l7E-01)
Pi( 34) i 19778E-0:)
Pi( 70) .14074--+-C)
Pi( 71) .67684E-ol
Pi( 72) .56956E-01
Pi( 73) 5lE0
Pi( 74) .26792E-01

Pi( 80) .67663t.Q
Pi( 81) 32539E-Q--l
Pi( 83) -. 11639i-0:'
Pi (100) 33360rr-Co
Pi (101) . 16052E-o:i
Pi(140) 19 l809E-01

---------------------------------------- ------

~UD~\L :)R 71I~vE S;-.RlaES AX:CATRE

DA7A Z = XCCA7RE 10000. 1000o CPSERv:O

0-6===-ENCING ON Z NjONE

BC-(CAS-ING OFF

uNIVARIA7E MODEL DARAME7ERS

FAC70R LAG CQEFFICIENT T -<A:0

I MEA~N -. 18902E-+.0-
7, AUTOREGRESSIVE 1 I .17256E+00 5.274
3 AuTOREGRESSIVE 1 2 .561 3 7E+U()
4 AUTOREGRESSIVE 1 3 . 175227E--00 4. .
5 AUTOREGRESSIVE 2 30 .,562E-C0 3.f-
E MOVING AVERAGE 1 a .751 0~o0m() 4. 40
7 MOVING AVERAGE 2 1) -. 1744A+ o -5. -4



T-iE RESID;AL STATIS7ICS

SL'I 3 SQuARES 1I558E-1)() DEGREES '7 7 EHD :-
A4 fEAN SQUARE .13081E-03 NUMBER 0 R--S7DL'E :

"* R SOLARED .6287E+00

THE P! WtIGHTS

.N:VyRpT"E BOX-JENKINS MODELS CAN Bl EXPR-SSED AS A S-
T -- E - -

A RANDOM Se-OCK. DEFINED PS T"E PI wEIGHTS, MODE"S EFwESEu .\
*': -E;RS ARE LSE UL FOR FORECASTING AND/OR COMPR.SCN TO C'-ER -

T -E GENERAL FORM OF T-E MODEL EXOIgESSED ;Y TE Ci PI :G- S

Z(t) = Constant + Pi(1) * Z(t-1) + Pi(2) * Z(--2; . ir *

LAG 7-E PT- W-IG-7F

Const ant -. 4 6 0E0 !
Pi( 1) -. 17256E+00
Pi( 2) -. 83646E-00

Pi( 3)
* Pi( 4) -. 2301 1EO0
SPi ( 5) -. 61 6LE-0l
.-Pi( 6) -. 63302E-01
t Pi( 7) -. 16853F-01

Pi( 8) -. 17414--01!
Pi( 30) -. 1158E+Q0
Pi( 31) .19986E-01
Pi( 32) .33157E-01
Pi( 3 ) .25793E-01
Pi ( 50) 17444E+0)o

Pi 51) .30101E-01
Pi ( 5 ) . 14592E-00

Pi( 53) .38847E-'!
Pi ( 54) .4-, 14!E-01
Pi( 55) .10687E-01
Pi( 56) 1..043E-(:)1
Pi( 80) .20205.-01
Pi (1()) -. 343.E-01
Pi( 1O) -.25454E-01

'.* ' 
"

-' L .. , La ., a- ----- --... . - - - - - - - - - - - - - - - - - --- • .



eq 'iDEiN3 SESuL.TS 7OR 7IME SERIES sxCAiII .

DATA Z = AXCAII2. 1000. xC'c' cSE~v-:- 'i

Du=ERENCING ON Z NONE

BACKCPS-ING : OFr

jNIVARIATE '0DEL. DAPRAMETERS

FACTOR LAG COEFFIC"ENT T -RTP,"-

I mEA -. a7-796E+0:

2 AtLTORE3RESSIVE 1 20 .112:E-00 .
37 .OVTNG AVERAGE 2 . 1 34025E-00

4 MOVING AVERAGE 1 3 -. 91043E-- --. 30

5 MOVING AVERAGE 2 40 4 i13533E-00 -4.?

TmE RESiD)UPL STATTSTILS

SL O SOuRES .27911E-01 DEGREES OF REEDi 7 f
MEAN S;LRE : .2862EE-02 NUMBER O" R-SIDL;4'S

S,-.,iA 5 : 17 E -00C

TE P-7 WEIG-TS

VNpy R .- E BCX-JENKINS mODELS CAN Bk_ EXPRESSED PS AwEI4-sTED a ,-
-JS NDOM S CC,. DEFINED AS T-E 01 WEIGi-TS, "CLEL-S AH'_SD

-ERS i=_ E==, = R -REAST G AND/OR COMA-QR7SON 7- 7-._ ? -. _ _-__

--7- ENEPAu ;C7r M OF T-E MODEL EXPRESSED _;Y 7-E 0I vE:3--S -

= Constant * Di(1) * Z(t-1) 1 Pi(.) * Z(t-.-) ... Di(r * Z

LAG TrE P7 WEIG--

Constant -. 36265E01
i ( i ) -. 0 E-DC

Pi ( ) -. 11577E+(
Pi( 3) 51652E-0:

Pi( 4) 48552E-01
Pi( 5) . 2706E-1
P1 ( .0 -. 1 l1.+(')_

Pi( 2 -. 3 (4)E-1

Pi ( 46) . -5 3 E C)
Pi( 41) .

2) . _667

Pi 6:) . 1 1 3_0

S:) -. 1631

- - - - - - - - - - - - - - - - - - - -



'vtCD ING ;Rz3LT-S =OR T I"ME S-;-R IES A XCC11 1

-~ ~ L)7 Z = Pxcc1iJ. 10000. 1~) ~Ev:\

DIFFERENCING ON Z :NONE

BPCK(CAS71NG OF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T W<T'J-

I MEAN -. 196o9E-01
2 AUTOREGRESSIVE 1 1 . 270793E-o-o 8.62
3 AUTOREGRESSIVE 1 2 . 34.385E-#-.0 11. 27
4 AUTOREGRESSIVE 1 3 . 19783E-00 6.35
5 MOVING AVERAGE 1 20 -. 18812E+():)-58

THiE RESIDUAL STPTISTICS

SL C SQUA~RES .87317E-o2 DEGREES OF w'
"EPN SQUARE . 88021E-05 NUMERE OF R -STDLA-S
R SO.ARED . 562192-+00(

THE P! WEIGHTS

-N:vPR:A EOX-J=NK<INS mGDt LS CPN 9B-. EXPRt-SSED AS A ~
L*- Z4 RANDOM~ SHr-OCw. DEFINED AS T-E PI WEIG-7S, MLDEL.S ;:x ' 4 SED
.= q"S PRE U.SER7UL FOR ;:'RECASTING PD/OR c~RsNTO 0 -E~ D

T,-4E GENERAL FOR!" OF ThE MODEL EX7DRESSiD ;:,Y 7-E D'i v4E>-3 -- S

* Ccntar~ + i(1) *Z(t-1) + i(-,:) *Z(.C-:,) +:



Cornsica ril -5

Pi( 3) -. 19783E0
Pi ( 20) .k !  ~~Pl.( :1, 5,),E0

Pi( 22) .64683E-<'
Pi( 3) .37214E-01
Pi( 40) -. 35388E-0:
- -K 4 .2) 12-. 168E-61

MODE .!%G RESULTS FOR T:, E StRIES AXCA121.

K DATA: Z = AXCA121. 1000. 1000 SERvAN

DIFFERENCING ON Z NONE

[ a BACKCASTING OFF

UNIVARIATE MODEL PARAM.ETERS

FACTOR LAG COEFFICIENT T ,ATO

I MEPN -. .882.E+01
D. AUTOREGRESSIVE 1 10 .2.0174E-E00 .27
-.3 ~OVING AVERAGE 1 ± .17375E+O0 8.65

4 MOVING AVERAGE 1 2 12.206E+00 -3. 855
5 MOVING AVERAGE 2 40 -. 89747E-0- -2.72

T-'E RESIDUAL STATISTICS

*SUM OF SQUARES . 14656E+ol DE'S3R EES 0 F ;7R 4ED
Mt EAN SQUARE . 14880E-02 NUMBER O S :
R SQUARED . 11139E+00

SI| THE PI WEIGHTS

JNIVARIATE BOX-JENKINS MODELS CAN B: EXPRESSED AS A WE -7z a ,---l
A R NDOM SHOCK. DEFINED AS T-E PI WEIGHTS, MODELS E.ES-D " -EE

TERMS ORE USEFUL OR =ORECASTING AND/OR COMPARISON TO C-HE- T.E 0- .

T-E GENERAL OQIM OP T-E mODE- EXDRESSD EY -- E z -S :

Z(t) . C. nstar_ t + -' .( ) .Z(.-.. + C,( ) Z z,-.. .. --I-* .--- )



: -AG T-E P7 wi-IG--

Consant -. 3747E-0 I
Pi ( i) -. 27375E +C0
Pi ( 2) 47121E-'1
Pi ( 3) .46313E-01
Pi( 10) -. 20176E.-00
Pi( 11) -. 23-E-01
Pi( 40) .89747E-0!

iPli 41) .24566E-0
Pi( 50) .18105E-0:

"ODE;_ING RESULTS FOR TIME SERIES AXCC121.

DATA Z = AXCCI2.1. 10000. 1000 S : V ; 7

D~iERENCING ON Z : NONE

BAC.KCASTING : OFF

UNIVPRIATE MODEL PRAME'ERS

FACTOR LAG COEFICIENT T RAT:O

i MEAN -. 19481E*01
2 AUTOREGRESSIVE 1 2 .65102E-100 9.57
3 PUTOREGRESSIVE 1 3 . 2026SE 00 7.40
4 MOVING AVERAGE 1 1 . 2:.592En)0 7.46
5 MOVING AVERAGE 1 2 .5231LE 00 6.72
6 MOVING AVERAGE 2 20 -. 20041E-00 -6. 15

THE RESIDUAL STATISTICS

Sum OF SQUARES .75131E-01 DEGREES O x .ED, :
m EAN SQjARE . 75813E-04 NUMBER - RES:DP_,_S
R SQUARED .11171E 00

* THE Pi WEIGHTS

* - '.NIVARIATE BOX-JENKINS MODELS CAN B. EXPRESSED AS A wEII3-_D S'_
Pf S A RANDOM SHOCK. DEFINED AS T-E PI WETGHTS, MCDES ED ESSED N
TERMS ARE USEFUjL €OR FORECASTING APjD/OR COMOARISOf T3 O-rE TDE. - l-

-TE GENE;L_ iROR OF T-E MODEL EX RESSED ;v -E 3 1 -S 'z

Z(t Constant 0o (l) * Z(t-1) O (2 * Z 't-, .•. . * Zw:- -

9:'i



,_7G TE iWt-GTS-7

Conscarit -. 12484E-02

Pi ( I) -. 23592E-q-)o
PI( 2) -. 12298E-01

- Pi ( 3) -. 6.62!E 0)0
Pi( 4) -. 78870E-.oC

*"Pi ( 5) -. 50842E ::
- Pi( 6) -

Pi ( 7) -. 39159E ('(0
Pi( 9) -. 37095E .6 )
Pi( 9) -. 26303E 00
Pi( 10) -. 26302EOC)
Pi( 11) -. 21499E+00
Pi( 12) -. 18831E--00

i Pi ( 13) -. 15689E 0)
Pi( 14) -. 13552E 00
Pi ( 15) -. 1140A.E-4-Q
Pi( 16) -. 97797E-01

Pi( 17) -. 82729E-01
Pi( 18) -. 70676E-01
Pi( 19) -. 59951E-0I
Pi( 20) .14930+)O

I Pi( 2. ) 20948E C0
""Pi( 23) .92058--0!

P ( 24) 1313E C00
Pi( 25) .79132E-0!

*.PiC 26) . 87354E-,'1
SPi( 27) I .62003E-(:)1

P C 28) .6C32E-C, I
Pi( 29) .46666E-0
Pi( 30) .4256t5E-' I

Pi( 31) .34454E-01

Pi( 32) . 30395E-01
Pi( 33) .E5194E-0(1
Pi( 34)
PiC 35) . 18332 E-01
Pi( 36) .15752E-01
Pi( 37) 13306 -01
Pi( 38) . 1i379E-C0
Pi( 40) -. 31936E-0!
Pi( 42) -. 4344-E-O1
PiC 43) -. 19691E-C)!
Pi( 44) 27370'E-0'1
Pi( 45) -. 16758E-01
Pi( 46) -. 71E-K)
Pi( 47) 13077E-0:

* Pi( 48) 12643-E-01

-- - - - -- --. --- --



iODEiING RESULTS FOR TIME SERIES AXCA211.

DATA Z = AXCA2U1. 1O00. 1000 OSEYVT-'NE

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

,jNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

oi I MEAN -. 33753E+01
2 AUTOREGRESSIVE 1 1 -.54606E-00 -17.36
3 AUTOREGRESSIVE 1 2 -. 24740E+00 -7. 86
4 AUTOREGRESSIVE 2 10 . 14738E-00 4.60
5 AUTOREGRESSIVE 2 20 . 16534E+00 5. 27
6 MOVING AVERAGE 1 30 -.24072E+00 -7.34

THE RESIDUAL STATISTICS

SUM OF SQUARES : .32738E*01 DEGREES C, - FzEDOC :7
m MEPN SQUARE : .33681E-02 NL'mBER .F RES:O-AS

R R SQUARED .34592E+00

THE PI WEIGHTS

uNIVARIATE BOX-JENKINS MODELS CAN Bt EXPR-SSED AS A WEIG-TED S - "
DLuS A RANDOM SHOCK. DEFINED AS T-E PI wEIGH7S, MCDELS ExPRESSED -- E--_
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OQHE- TYDE" 0- m-DE-S .

T-E GENERAL FORM OF THE MODEL EXORESSED -Y T-E PI wE:,G- .S

Z(t) = Constant Di(1) * Z(-1) Pi (2 * Z(t---. ... + Z' ,) * -



Conszant -. 2a877E-C'
, P1 ( 1 ) . 54606E-(')0

SPi( 2) .2474)E-00
Pz ( 10) -. 14736E-00
Pi( It) -. 80478E-01
Pi ( 12) -. 3646 -E-(') I

Pi( 20) -. l1534w-00
* Pi( 2-) -. 928EE-01 l

Pi ( 22) -. 40905E-0
iPi( 30) .24072E-+0)
Pi( 31) -. 13145E-00
Pi( 32) -. 59553E-t1

I-Pi( 40) .35477E-01
Pi(41) . 19373E-01
Pi( 50) .39801E-01

Pi 51) .21734E-0l
Pi( 60) -. 57947E-0l
Pi ( 61) 31642E-01
Pi( 62) .14336E-01
Pi( 90) .13949E-01

S -= = -- -- - -- - - -- - -- - -

h' iODELING RESULTS FOR TIME SERIES AXCC211.

DATA Z = AXCC211. 10000. i000 ,

r DIFFERENCING ON Z : NONE

BACKCASrNG OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T qAT7O

6

1 MEAN -. 15278E+01
-2 UTOREGRESSIVE 1 2 .69118E+00 17.9.
3 AUTOREGRESSIVE 1 3 .2t295E+00 9.Q4
4 AUTOREGRESSIVE 2 10 .3281)E+00 10.69

*5 MOVING AVERAGE I 1 .- 918E O0 6.89
6 MOVING AVERAGE 1 2 .62209EO00 13.34
7 MOVING AVERAGE 2 60 . 14956E 00 4. 52

T"E RESIDUIAL STATISTICS

SLM' OF SQUARES . 47244E-O1l DEGREES OF ~EDi
MEAN SQUARE .46208E-04 NUMBER 0 RSID9SS7
R SQUARED : 22098E 00

J'- -.-. - - - . t. A . A . A U t



THE Pi W -IGmTS

4 JNiVARiATE BOX-JENKINS MOD-LS CAN BF" EXP ESSED A A 4tG"TED S- -M -

)LLS Q RPNDCM SHOCK. DEFINED AS T"E I wEIGHTS. MODE.S ELRESS-D N

-ERMS ARE uSEFUL OR FORECASTING AD/OR COM'ARISON T C -- F -

THE GENERAL- FORM OF THE MODEL EXPRESSED BY T,-E OT wE-G-"S :

Z(t) = Constant + Pi(1) * Z(t-1) + Pi (2) * Z(t-2) .. i Ci * Z( -r,

LAG THE PI WEIGiT:

Constant -. 222 1E -02
Pi( 1) -. 21918E+00
Pi( 2) -. 13613E+01
Pi( 3) -. 68766E+-)o
Pi( 4) -. 99758E-XO
Pi( 5) -. 64644E+0

Pi( 6) -. 76227E+O0
Pi( 7) -. 56922E+Oo0
Pi ( 8) -. 59897E+00
Pi( 9) -. 48539EO00
Pi( 10) 1 -. 80710E+00

Pi 1 1) -. 47885EC0

" Pi( 12) -. 38027Ei00
' Pi( 13) -. 9825E00

Pi( 14) -. 30193E+00
Pi( 15) 25171E-00
Pi( 16) -. 24300E+00

I Pi( 17) -. 00985E-00

Pi( 18) -. 19716E-00
Pi( 19) -. 17376E--00
Pi( 20) 1 0-. 74-_ 00

. Pi( 21) -. 14332E+00
Pi( 22) -. 13141E+00
P i( 23) -. 11796Et-00
Pi( 24) 10760E+oo
Pi( 25) -. 96968E-0)1

, Pi( 26) -. 88192E-01

Pi( 27) - ~5E0
Pi( 28) -. 72322E-01

I Pi( 29) -. 65403E-01
Pi( 30) -. 59326E-01

. Pi( 31) -. 53690E-01
SPi( 32) -. 48674;-0!

Pi( 33) -. 44068E-01
Pi( 34) -. 39938E-0i

O Pi( 35) -. 36166E-0U
Pi( 36) -. 32773E-01

1 Pi( 37) -. 29683E-('1
I"Pi( 38) -. 26893=-0.

P i ( 39) -. 4 _ C- I

Pl( 40) 22 6

4.-



P i ( 41) - 99-'
P i( 4i2) -. 18!1 1E-C)
Pi ( 43) -. 164C6E7-' 1

1Pi( 44) -. 18-C
P i (45Y* - 13464E-('11
Pi( 46) -. 1197E-01.
P i( 47) .11 0413E-()
Pi( 48) -. 10009W-O:
p i ( 60) -. 15Z62E+C0:)
Pi( 61) -. 3555oE-01

Pi( 63) -. 10512"-+00~
Pi(C 64) -. 15126E-C~o
Pi.( 65) -. 98549BE-01
PI ( 66) -. 1,7 Ei((
Pi( 67) -. 86665E-0D
Pi ( 66) .9()97()E-

Pi( 69) -7385E-0
Pi( 70) -. 12185E-#-)o
Pi( 71) -72650Ei-01
Pi( 72) -.57808E-C.
Pi( 73) -. 45453E-(-)
Pi( 74) 4 9 4 -. i

Pi( 76) -. 3697-'E-()
Pi( 77) -31956E-01
VPi ( 78) -. 3000)(4E-CMl
Pi( 79) -6456E-01l
Pi( 80) -. 24464E-C01

Pi(C 81) -. aC)E-11
Pi( 83) -. 17958E-0 I

*Pi( 84) 1 679-.
Pi( 85) -. 14761E-(-CU'
Pi( 86) . 3424E-,-.1

1Pi( 87) -. l2125E-0:
Pi ( 88) 1. 1 00 E-C' I
Pi(120) -28 ()
Pi (1212) - 3(0833E-CUl
Pi(123) -. 15729-01O

1Pi(1.24) 2,6,9E0
Pi(125) -. 14744i.--C'1
Pi (126) -. 17309)'E-u1)
Pi(127) -. 12966E-01

Pi (126.) - 8~Ec
Pi(129) -. 110496-01l

Pa (131) - 10869F--(:)!

-- - - - -- - - - -- - - -



m0DE-,ING RESULTS FOR TIME SERIES AXCA221.

DA7A Z = XCA221. 1000. 1000 QBSERP--L2-N

DIFFERENCING ON Z NONE

SACKCASTING: OFF

UNIVIARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T NT

1 MEAN -.33928E+01
2 AUTOREGRESSIVE 1 1 -. 30822-=+00 -10).06
3 AUTOREGRESSIVE 1 3 . i5lo7E+t00 4. 76
4 AUTOREGRESSIVE 1 4 . 15222E-00 4. 15
5 AUTOREGRESSIVE 2 10 .34()4()E-*0 ..0. 75

-6 AUTOREGRESSIVE 2 20 .20789E*00 6.38
7 MOVING AVERAGE 1 40 -. 1672'-E+O00 -4.86

TmE RESIDUAL STATISTICS

SLM OF SQUARES :.29i6lE.0il DE&E=S ~ REEDC'
S MEAN SQUARE :.30094E-02 NUMBIER O - R=SID -PAS

R SQUARED .35080E+00

THE PI WEIGHTS

~VA~IPEBOX-JENKI.NS MODELS CAN Bt: EXPRi-.SSED AS A W.jE.G-TED Sm -z"
ZIL1rS A RANDOM SHiOCK. DErINED AS T-E 01 WE7.GH7S, 'vODES EA-- ESS=D \ -

='R-"S ARE USE=UL FOR FORECASTIN4G AiND/OR CCMPAR7S,!jN TO E 7E

THE GENERAL FO- M OF THE MODEL EXPRESSiD _-Y 7"E 01~:3

Z(t) Constant + Pi(1) *Z(t-1) + Pi(2) *Z(rt-Q) Di. +1(r?) Z-



LAG TE P7 wt-IG-7T

Constant -. 44675EUo Pi ( 1) 30822E-0o
Pi( 3) -. 15107S+00
Pi( ) -.

Pi( 10) -. 34040E+C00
Pi( 11) -. 10492E-0O
Pi( 13) .51426E-01

Pi( 14) .45007E-0.
' Pi( 20) -. 20789E''00

Pi( 21) -. 64076E-01
Pi( 23) .31407E-0:
Pi( 24) . 27487E-.'
Pi( 40) .16729E-00

Pi( 41) -. 5156,E-0,
Pi( 43) .25273E-01
Pi( 44) 22118E-0!
Pi( 50) .56946E-0!
Pi ( 51) .17552E-01
Pi( 60) .34778E-01

Pi( 6.) . 10:719E-01.
Pi( 80) -. 27986E-0Cs

S----------

S mCODE;ING RESULTS FOR TIE SERIES AXCC2i.

DATA Z = AXCC221. 10000. 1000 OSE YRV7' -

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEF7IC7ENT T -(TP7-

1 MEAN -. 14343E-'1
2 AUTOEGRESSIVE 1 10 28348E-00 8.96

- - 3 MOVING AVERAGE I I 39625E+'00 3. 68
4 MOVING AVERAGE 1 3 -. 21290E 00c -7.3-

* 5 MOVING AVERAGE 2 20 -. 15849E+00 -4. 77

THE RESIDUAL STATSTIC3

* SUM OF SGUARES ; . 13406E 0() DEGREES _ k ;ED_---
*- rvEAN SQUARE .1361OE-03 NLMBER Z -z-_ __

R SCuPRED .227 15E-00

- . , ,

-9"



THE PI WEIG"TS

* jNIVARTATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A w,: _ S --

- -.'S A RANDOM SMOCK. DEFINED AS T"E PI WEIt3H7S, MQDE"S Exo ESSD "N __

7 TERMS ARE ijSEFUL FOR FORECASTING AND/OR COMOPRTSON TO 0--E- EY - _

TE GENERAL FORM OF T.E MODEL EXPRESSED. iY E 1I wE.,3=5 .:

- Ut) =Constant -. Pi (1) *Z(t-1) + Pj (2) *Z (t-2) k r4 Z()r

LAG : THE PI WEIG-T

4 Constant -. 19458E+01
Pi ( I) -. 3962 E 0
Pi( 2) -. 15702 E+0o
Pi ( 3) .I068E 0
Pi( 4) . 14407E---00
Pi ( 5) . 90516E-0)I
Pi( 7) -. 29171E-01

- Pi( 8) - 3083.)E-)

" ;Pi( 9) -. 13023E- -
Pi( 10) - 26 243E o

Pi( 11) -. 10535E+00')
Pi( 12) -. 38973E-01
P, ji( 13) 44686E-01
Pi( 14) 40136E-01
Pi( 15) .24201E-0
Pi ( 20) 1:5897E-00
Pi( 21) .64809E-0!
Pi ( 22) .2640±E-(')1

* Pi( 23) -. 23382E-01
Pi ( 24) -. 23063E-O1
Pi( 25) -. 14759E-01

Pi 30 448a7E-U
Pi( 31) 16701E-)!

- * Pi( 40) -. 2514E-() i
P Pi( 41) -. C),272-0i

-.

[-



7, P~ 7NC ~E~7 R *I "E S E R1E S P X 0 i--f

DATA Z A XCpila. 1000. !000 OBSE '4

01F;ERENCING ON Z NONE

BACKCPSTING OF

* UNIViARTAPt MODEL PARAMETERS

FACTOR LA~G COEF ICIENT- T RA77Q

1 M'EAN -. 21326E+*0l
2 AUTOREGRESSIVE I I -. 20114E-o-0 -6.2

413 AUTOREGRESSIVE I a .1i076E+-()( 3.41
4 ATOREGRESSIVE 1 3 .15122E-O00 4.72

-5 Au70REGRESS IVE 2 10 . 29527E-400 9. 63
6 AUTOREGRESSIVE 2 30 . 19493E-o00 6.24
7 MOVING AVERAGE 1 40 -. 84166E-Cwl -2.4S

THE RES76DUWPL S7hPTIS7ICS

C= SQuARES : . 558_i=() DEGREES CI- PRZ1;

MEAN SQUARE :.12040E-02 NUMER~. OF R5.5..ES
R SQuPRED 28:E+0

4 THE PI WEIGiHTS

* *IVPR:aE BOX-JENKINS M1ODE...S CAN 8= -XR AS-Y
0,, RANDOM SmOC~ DEPINED AiS T-E 31 WE7'3H-C3 tQE. 1E~~D:

4 E~mS ARE USEPUL =OR FORECASTING A;\ilD/0R coMc1PR:SON 70C~E

T-E GENERAL FORM OF T-iE MODE,. EX0R=SS9:D o I jE>,-

Ut) Constant + Di(1) *Z(t-1D +. Pi(2 *Z) ~ .*l



t

- --- ----------- --
-Ei

Constant -. 2992;;7

i Pi( I) .2C14.E-00

Pi 2) .1 1076E-00
Pi( 3) -. 1512,E-C0
Pi( 10) -. 29527E-o00,
Pi ( 11) -. 5939 iE-01

Pi( 12) .32705E-01

i 'Pi ( 13) .44.652E-01
Pi ( 30) 19493E-)00
Pi( 31) -. 39206E-01
P±( 32) .21590:E-01

Pi( 33) .-29477E-(1
Pi( 40) .84168E-01

Pi ( 41) -. 1693CE-C'1
Pi( 43) . 12728E-l-

Pi( 50) .2485,E-01
Pi ( 70) .16407E-0!

"ODE._ING RESULTS FOR TI'E SERIES AXCC112.

DATA Z = AXCC112. 10000. 10 0 C' SEq iP

DI=ERENCING ON Z : NONE

BACKCASTING : OFF

JNIVAR'ATE MODE,- PARAMETERS

FACTOR LAG COE =ICIENT T AT:O

I MEAN - 111 -E +,:) I

2 AUTOREGRESSIVE 1 1 .65572E-0! . ')

3 AUTOREGRESSIVE i a 43537E+', .5. Ba:)
4 AUTOREGRESSIVE : 3 .26764E7-0 6. 6.
5 AuTREGRESSIVE 0 1780'3E C0 5. 5 -
6 "OVING AVEPAGE 1 20 -. 27222E--C -8 5

. .* * * ** * * * * * ** * * 4 ** ** * - * * U *. ]** * 4- *

THE RESIDUA S-A'IS-ICS

SL" Oi1 SQLPRES .53127E-:)= D GE --
mEAN SQAE . 54156E-')5 N _ -

R SQUCRED .51488E-J"



I9 '>7E BOX-JE."iKT,%S 'ODEZ'S CPaN E~EXPESS=D ;,S P~~z-

--S A RNDCM S"-CIC. DEFINED ;4S T-E w~-S E5 :
'ERNS -4E -jE7L ;70R CECAS7NG AND/OR~ 0:7Mq -S-N 7- ---

T-E GENERZL ='C~RM OF Th-E MODEL EXRESz Y -- i OT ~~

Z (t) Conistan~t + P,. 1) * Z (t-) P, P(21 Z (1 -ii. -~ (1ri Z

LAG i T-E P!WIGI

Constant~ 15- - t--C

Pi( I ) .65572E-0 I

Pi( 2) -4353'7E+(:)0

Pi( 10) -. 1780D3;;-*C'C

Pi( 12) * 750E-0i

wPi( 13) .47646E-(-)!
Pi( 20) 72EqDC
Pi C 21) .15EC

Pi( 2 2)15;. 0
Pi( 23) .72858E-CU)
Pi(C 30) .48464E-C'
Pi( 32) 2' 21 10E-0 i

Pi( 33') -. 12971=-(:)
Pi( 40) -. 741o6E-01
Pi( 42) - 32263E-oi
Pi( 43) - ~3E0
Pi( 50) -. 13193E-01
Pi( 60) .2 017 E-C'E

~'ODE-Xl43j RESUL TIS FOR TIME SE.RIES AXCP!2E.,

0:=EENCING ON Z NONE

BpcC0S ING :OFF

LCNIVARIAP'E M~ODEi PARAMrEERS

FACTOJR LAG COEFFICIEN7

I 1. P Z . 27 27E.C

71 AU ' REG RESSIVE 1 205 -

* 4 MOVING AVERAGE 1 1 . .3

6 mCVING AVER3 3-.7G: I'

. . . . . .
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rT-E R .SIDUAL S-A'rISTICS

StjM OF SQUARES .5158oE-C)I D-GzEES 0- F=_EDC-' :
mEAN SQUARE .5506E-02 N-,! E R ,_, REI,_'S :,

i R SQUARED .524182+00

THE P! WEIGHTS

jNIVARiATE BOX-JENKINS MODELS CAN Bi EXPRESSED AS A WEIG-TED S_,- -
OL-S A RANDOM SHOCK.- DEFINED AS T"E 0I wETGM S. MQ-DELS EXDRESS-'D "N -E
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO 0THER -YOE) 0- ,'D'_

T-E GENERA,- ORM OF T E rODEL EXmRESSED EY '-E I w__:3-7S :5

Z(t) =Con-stanit p i(q) *Z(v-1) a i(,!) *Z(--7 Z (-s(,~*

LAG T"E Pi Wt-IG-Tf

Constant -. 4992SE-*C0
Pi( ( -. 53277E+00
Pi( 2) -. 28384E-00

"Pi ( 3) -. 42 120E-0)1

Pi( 4) .54864E-0:
Pi( 5) .65306E-o1
Pi( 6) .37858E-0
Pi( 7) . 13196E-01.)
Pi( 10) -. 42048Ei-00

pi( 11) -22386E()0
Pi( 12) -. 11857E+00
Pi( 14) .23271E-01
Pi( 15) .i7468E-01
Pi ( 16) 1:87(:)E-01
Pi( 20) .18301 -00

Pl( 21) .9757,*E-0!
P 1 ( 22) .52279E-:
Pi( 25) -. 11943E-C1
Pi ( 30) -. 20281 E--'00
Pi ( 3,L) -. 1080 E +(.)
Pi( 32) -. 57706E-0

P1( 34) . Ii090E-01
Pi( 35) .13243E-0!
Pi( 40) -. 35136E-0i
Pi( 41) -. 18688E-01
Pi ( 50) . 37517E-01
Pi( 51) .19988E-01
Pl( 52) . 10670E-C)1

I--

ra l 2 J '



I."

'ODELING RESULTS FOR TIME SERIES AXCC122.

°- =

DATA Z = AXCC 2a. 10000. 1O00 QB9Y-DNE

DIFFERENCING ON Z : NONE

BACKCAS'ING OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFTCIENT T RAT:O

1 MEAN -. 10951E-01
2 AUTOREGRESSIVE 1 1 .19957E 00 4.07
3 AUTOREGRESSIVE 1 2 . 10598E 00 2. 39

4 AUTOREGRESSIVE 1 3 .48950E00 17.09
5 MOVING AVERAGE 1 1 .17681E 00 3.04
6 MOVING AVERAGE 1 2 -. 10757E-01 -.20
7 MOVING AVERAGE 2 20 -. 22387E+00 -7.00

T-E RESIDUAL STATIS7ICS

SLM OF SQUARES : .88485E-02 DEGREES OF r-EED : 99
mEAN SQUARE : .89379t-05 NUMB 1ER Ou S _D : 97
R SQuARED .41752E-00

'. -



THE P7 wEIGTS

4 * uNIVARIATE BOX-JENKINS MODELS CAN Bt EXPRESSED AS A WEIG-_TED 5_:m O 7-E -

:DL_,S A RANDOM SMOCK. DEFINED AS T-E DI WEIG-S, rODE-S EXPREESS-D >- -E=_
--RMS ARE USEFUL FOR iORECASTING AND/OR COMPARISON TO OTHE_. TY'E C- _-

THE GENERAL FORM OF TE MODEL EXPRESSED BY T"E DI wE-G-S :S

I Z(t) = Constant Pi (1) * Z(t-l) + Pi (2) * Z (t-2) ... (n) Z (t -n)

L" AG iThE PI WIG-T:

Constant -. 19261E+01
Pi ( i) -. 37638E--00
Pi( 2) -. 16177E400
Pi ( 3) -. 5L405E 00 )

k Pi( 4) -. 89148E-01
Pi( 5) -. 10232E-01
Pi( 20) .22387E*00
Pi( 21) .84259E-01
Pi( 22) .36215E-01

Pi( 23) . 1:506E-C.0
Pi( 24) .19957E-01
Pi( 40) -. 50116E-01

Pi( 41) -. 18863E-01
Pi( 43) 1 -. 25762E-01

Pi( 60) .11219E-01

= === = = ----------- =---------------

mODE-IN,3 RESULTS FOR TIME SERIES AXCA212.

DATA Z = AXCA212. 1000. 1000 OSV

DIF ERENCING ON Z NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTUR LAG COEF=ICIENT T AT 7

1 MEAN -. 19370E+01

I 2 AUTOREGRESSIVE 1 1 .47668- 00 1.52

3 AUTOREGRESSIVE 1 2 .35548E4-00 1. 40
4 AUTOREGRESSIVE 1 . 13653w. 00 2. 12
5 A'JTOREGRESSIVE 2 10 . 19872E-00 6. !8
6 MOVING AVERAGE 1 1 .53595E-00 1.70
7 MOVING AVERAGE 1 . '0283E 00 . 76
8 MOVING AVERAGE 2 20 -. 39200E-:4-0 -13. 09



°;,*

THE RESIDUAL STATISTICS

NSUM OF SQUARES .64o37-@.0 Dt.GREsa O - = -EDGMS 7
MEAN SQUARE .6541,E-03 NUMBi-R E A-SZlS

R SQUARED .63847E-00

THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED St-iM ,f7 7-E 1 -3 -

"-" PLUS A RANDOM SHOCK. DEFINED AS T-E DI WEIGHTS, MODELS EXPRESSED N 1 SE
*-.. TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHE'< TYZES 0 m DE_.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WE"G+--S IS

- Z(t) = Constant + Pi(1) * Z(t-1) + Pi(2) * Z(t-2) + 0.(r, , (,:-,

LAG t THE PI W-I G tT!

Constant -. 10520+02
- Pi( .) -. 10126E401
Pi( 2) -. 11010-*-01
Pi( 3) -. 93202E-f-00

:*Pi( 4) -. 72284E-+-00
Pi( 5) -. 57645E O0
Pi( 6) -. 45556=-00
Pi( 7) -. 36108E 00

- Pi( 8) -. 28592E-i00
Pi( 9) -.22648E-00
Pi( 10) -. 37809E+00
Pi( 11) - 15385E +0
Pi( 12) -. 88507E-01
Pl( 13) -. 5-51,E-O1
Pi( 14) -. 45559E-01
Pi( 15) -. 34866E-01
Pi( 16) -. 27927E-01
Pi( 17) -. 22039E-01
Pi( 18) -. 17477E-0l

Pi( 19) -. 13837E-01
Pi( 20) .38104+()

Pi ( 21) . 38828E-4-00
Pi( 22) .42 473E+C'0
Pi( 23) .3599-E+-0o
Pi( 24) .27904i+-.-(0
Pi ( 25) •2255E-o(00

4,

I)



I[ ( 26) .17588E+00
i ( 27) . 13940E+0

Pi( 28) . 1039E-00
Pi ( 25) .67437E-01
Pi( 30) .14715E00
Pi( 31) .59467E-01

u Pi( 32) .34027E-01
Pi( 33) .19663E-01
Pi( 34) .17440E-01
Pi( 35) .13336E-01

Pi( 36) .10685E-01
Pi( 40) -. 14947=+00
Pi( 41) -. 152a9E 0
Pi( 42) -. 16656E-t-0
Pi( 43) -. 14114E- 00
Pi 44) -. 10943E00
Pi( 45) -. 87274E-01

Pi( 46) -. 68970E-01
Pi( 47) -. 54666E-01
1 Pi( 48) -. 43288E-01
Pi( 49) -. 34288E-01
Pi ( 50) -. 57693E-01
Pi( 51) -. 23319E-01

Pi( 52) -. 13345E-01
Pi( 60) .58594E-01
ii( 61) .5'697E-01

i P( 62) .652922-01
Pi( 63) .55326E-01
Pi( 64) .42895E-01

SPi( 65) .34212E-01
Pi( 66) .27036E-01

Pi( 67) .214293E-01
Pi( 68) .16969E-01

Pi( 69) .13441E-01
Pi( 70) .22616E-01
Pi( 80) -. 22969E-01

I Pi( 81) -. 23401E-01
01i 82) -. 25595E-01
Pi( 83) -. 21688E-01
Di( 84) -. 16815E-01

Pi( 85) -. 13411E-01
t Di( 86) -. 10598E-01

* Px(102) .10033E-01

- - - -...-- - - - - - - - - --. - -.



* ,PDE=i*3 .ES-L.-S :R TIthE SERIES PXCC212.

" DATA Z = AXCC.12. 10000. 1000 OBSERVp7 i

D1-ERENCTNG ON Z : NONE

BACKCASTIN: OFF

"NVA :A7E MODEu PARAME'ERS

FACTOR LA3 COEFFICIENT T -ATIO

j E. -. I .358E '01

2 A~jTOREGRESSIVE 1 1 .42857E 00 4.93

;- :TOREGRESSIVE I a . 4)043EO00 6.31
4 M OVING AVERAGE 1 1 .34392E 00 3.88
5 'wfVING AVERAGE 2 50 -. 26843E+00 -8. 25

T"E RESIDLAL STATISTICS

r S',_ C,- S, RES :.4 7 133E-01 DEGREES OF FREEDOM
*EAN SQUARE .47466E-04 NUMBR OF R-SIDUA-S :9
R SQ,jPRED . 19904E-00

THE P1 WEIGHTS

NIVqiTP7E BOX-JENKiNS MODELS CAN B;- EXPRESSED AS A WEIG- TED SLM O T-E L -
--_S P RA NDO SHOCK. DEFINED AS T"E PI WEIG.HTS, M -DELS EAOESSED ZN --EE

-Er"S CJRE u ;SEL =OR FORECASTING AND/OR COMPARISON TO OHE- TY0E5 0- ;LDES.

Il l GENERAL ORM OF T-.E MODEL EXPRESSED BY T-E PI wEiGt-S IS

Z(t) = Cors art Pil) * Z(t-1) + Pi(2) * Z(t-2) ... + P1(n) * Z, n-r,

* . - A
l . -. *.



.- ~.-- - - - - - - - - - - - - - - - - - - - - - - - - -

olLAG THE Pi WEIGHT:

Constant -. 24784E O*1
Pi( ±) -. 77249E+00
Pi( 2) -. 50611E 00 i
Pi( 3) -. 17406E 00

Pi( 4) -. 59864E-01
1 Pi( 5) -. 20588E-01

Pi( 50) .26843E 00
SPi( 5.) .20736E+00

Pi( 52) .13586E+00
P i(53) .46724E-01
Pi( 54) .16069E-01

Si(10) -. 72057E-01
Pi(101) -. 55664E-01

P (102) -. 36469E-01 1
SPi(103) -. 12542E-01 1

Pi (150) . 19343E-01

pi11 .192E0

----- -- - ---- ----------

PI G ESL-S FOR TIME SERIES AXCA222.

DATA Z = AXCA222. 1000. 1000 OBSERVATIONS

DI FERENCING ON Z NONE

BACKCASTING : OFF

_2NIVARiPTE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

1 MEAN -. 18880E+01
ATOREGRESSIVE I 2 .13944E+00 4.41

3 AuOREGRESSIVE 1 3 .9710iE-01 3.06
- 4 AUTOREGRESSIVE 2 10 .24565E-00 7.81

5 AUTOREGRESSIVE 2 20 .23248E+00 7.37

*6 MOVING AVERAGE 1 40 -. 16181E+00 -4.41

THE R=SIDUAL STATISTICS

* S i= SOL'ARES .77-=04;+00 DEGREES 0; FZkEDOM

R 'ELrRED . ,5!75E 00

6N



IT-E RESIDLAL STATISTIL S

-SU - R- .27636E-01 DEGREES OF FREEDuM

JEAN SiOLARE .8142E-04 NUMB-R O RSIDUA-S 987
pR SQUARED .a2960EO+00

'.,

THE PI WEIGHTSK _

_ -VPATE BOX-JENKINS MODE..S CAN BE EXPRESSED AS A WEIGHTED SLM O 7-E
ARAND, S OCw. DEFINED AS T"E PI WEIGHTS, MODELS EXPRESSED -N ,- -

ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHE4 TYPES 0- CDES.

'-E GENERAL FORM OF ThE MODEL EXPRESSED BY T"E PI WE:G -TS IS

Z(t) = Constant + Pi(Z) * Z(t-1) + Pi(e) * Z(t-2) + Pi(rn) *

LAG 1 THE Pi WEIGHT

Constant -. 13545E-+01
P( a) -. 3224E-00
Pi( 3) -.20626E 00
Oi( 10) .14213E+00
Pi( 12) -. 45799E-01
Pi( 13) -. 29316E-01
Pi( 50) .31596E -00

SP( 52) .lO18E-00
Pi( 53) .65170E-01
Pi( 60) -. 44907E-01
Pi( 62) .14471E-01

Pi (100) -. 9983iE-01
..Pi(102) -. 32169E-01

e *Pi(103) -.20591E-01
*"Pi(110) .14189E-01
-'Pj(150) .3;.543E-01
Pl(152) .10164E-01

- -- .- - " . - " .- - .- -



Appendix D (Cont'd)

- AUTOBJ SAMPLE PRINTOUT (SUBJECT: JJJ)

MODELING RESULTS FOR TIME SERIES JJJAATRE

f DATA : Z JJJAATRE 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : I ) I OF ORDER 1

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

I AUTOREGRESS IVE 1 20 . 193Z33E 00 6. 07
a 2 MOVING AVERAGE 1 1 .97558E 00 41.12

3 MOVING AVERAGE 1 3 -. 66148E-01 -2.67
4 MOVING AVERAGE 2 50 -. 1742E+00 -5.36

THE RESIDUAL STATISTICS

.+SUM OF SQUARES : .48252E 01 DEGREES OF FREEDOM :97
- MEAN SQUARE : .49489E-02 NUMBER OF RESIDUALS : 979

R SQUARED .68648E 00

THE PI WEIGHTS

* jNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE

*- TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODE"S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS iS

*," Z(t) Constant + Pi(1) * Z(t-1) Pi(2) * Z(t-2) ... + Pi(n) * Z(t-r.)

0W+"

r6:



* - H 1 WEIi1T

Constant .00000E7;5
1Pic 1) -19756E-o01
*Pic 2) :-19273E+01
Pic 3) :-..18141E+01
Pic 4) :-.16391E+.01
Pi( 5) -. 14716E+01.
Pi( 6) i-.13157E*s01
Pic 7) -. 11751E-00
Pic 8) -10491E-o-1
Pic 9 ) -. 953643E+00
Pic 10) -8358B3E-o00
Pi( 11) -. 74602E+00
Pic 12) : .66586E-400
PiC 13) :-.59431E400
Pic 14) I-53045E-0

I Pic 15) -47345E-400
aPi( 16) -.42258E+00
Pi( 17) 1-37717E-t00
Pic 18) 1-.33664E+00
Pi( 15) -. 30047E+00
Pic 20): -. 46151E-*00
Pi( 21) -. 2-3464E+00
Pic 22) 1-.20504Eo-00
*Pic 23) 1-.17340E-t00
Pi( 24) 1-15365E-#00

aPi c 25) 1 -. 7E--0
aPic 26) 1-.12127E+0

2 

,*00

*PiC 27) 1-.10815E+00

PlC 28) 1 -. 96308E-01
PiC 29) I .86129E-01

*Pic 30) 1-.76872E-01
PiC 31) -. 68611E-01
Pic 32) -.61238E-01

*1Pic 33) -.54657E-ol
Pi( 34) -. 4a784E-01
aPi( .35) .3342E-01
PiC 36) -. 38863E-ol

ai pj( ) -. 34687E-01
Pic 38) I-.3o960E-O1

*aPi( 35) -276.33E-01
*Pic 40) 1-.24664E-01
Pi( 41) I-.22014E-01

aPiC 42) -. 19648E-01
Pi( 43) . 17M37E-01

aPi( 44) -.1565E-ol
Pic 45) I-13970E-01

aPic 46) 1-. 12463E-01
aPic 47) -. 11129E-01
aPic 50)I .16631E-oo

*1

I .- t-~t~-



Pi( 51) .33712E+00
*-Pi 52) .32948E 00
* Pi( 53) .3t043E+O0

Pi 54)~ .28055E+00O•.Pi( .•55) .25190E+00
Pit 56) .22522E+00

I Pi( 57) .20116E 00
*"Pi( 58) .17958E+00

Pi( 59) .16030E+00
Pi( 60) .14308E+00

9 Pi( 61) .-12771E+00

- Pi( 62) .11398E+00
Pi( 63) .10174E+00
Pi( 64) .90804E-01
Pi( 65) .81046E-01
Pi( 66) .72338E-01
Pi( 67) .64565E-01
Pi( 68) .57627E-01
Pi( 69) .51434E-01
Pi( 70) .79589E-01
Pi( 71) .40152E-01

SPi( 72) .35769E-01SPit( 73) 29631E-01
Pi( 74) .26251E-01
Pi( 75) .23244E-01
Pi( 76) .207176-01

.Pi (- "Z7) .. -... &d 474E-O1
Pi( 78) .16485E-01
Pi ( 79) .*14713E-01

Pi( 80) .13131E-01
P1 ( 81) .*11720E-01

Pi100) -. '29001E-01
Pi(101, o -. 58757E-01

1 Pi(102) -. 57423E-01

Pi(103) -.54102E-01
Pt(104) -. 48894E-01
Pi(105) -.43902E-01
Pi(106) -.39251E-01
Pi(107) -.35058E-01

. I Pi(108) -.31298E-01
Pi(109) -.27937E-01
Pi(110) -.24936E-01

Pi (1) -.22257E-01
Pi(112) -. 19865E-01
Pi(113) -. 17731E-01

* @ Pi(114) -. 15825E-01
Pi(115) -. 14125E-01
Pi(116) -. 12607E-01
Pi(117) -. 11252E-01
Pi(118) -. 10043E-01
Pi(120) -. 13869E-01
Pi(151) .1023'E-01
Pt(152) .10004E-01

!



,--.

MODELING RESULTS FOR TIME SERIES JJJCATRE
=r "

DATA : Z = JJJCATRE 10000. 1000 OBSERVATIONS

DIFFERENCING ON Z : 1) 1 OF ORDER 10

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

1 AUTOREGRESSIVE 1 10 -.68971E+00 -24.07
2 MOVING AVERAGE 1 1 .28697E+00 9.47
3 MOVING AVERAGE 1 3 -. 17975E.00 -5.92*
4 MOVING AVERAGE 2 20 .43790E+00 12.25
" TREND CONSTANT -. 81478E-03 -7.61

THE RESIDUAL STATISTICS

SUM OF SQUARES : .38776E-01 DEGREES OF FREEDOM :
MEAN SQUARE : .39770E-04 NUMBER OF RESIDUALS : 980
R SQUARED : .84003E*00

THE P1 WEIGHTS!" == =-==-=== =

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF T Z S-
" PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED N T7HESE

TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF 1ES.

I

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WE:GHTS :S

Z(t) Constant + Pi(1) * Z(t-1) + Pi(2) * Z(t-2) ... + Pi(n) * Z(t-r)

I°

) -i:
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LA~G THE PI WEIGHT

S : Constarnt -. 16236E-02
Pi( 1) -. 28697E+00

Pi 2) -. 82350E-01
Pic( 3) .15612E+00
Pic 4) .96383E-01
Pi( 5) .42461E-01

-- Pi( 6) 1 -. 15877E-01
Pic 7) -. 21881E-01
Pic 8) -. 13912E-01

FPic 10) -. ,30668E+00
Pic 11) -. 85507E-01

-: Pi 12) -. a24333E-01
Pic 13) .48143E-01
Pic 14) .29185E-01
Pic 15) .12749E-01
Pi( 20) -. 11265E+01
Pic 21) -.32251E+00
P PU 22) -. 92495E-01

i Pi 23) .17595E 00
Pic 24) . 10846E+00
Pic 25) .47751E-01
Pi( 26) -. 17923E-01
Pic 27) -. 24639E-01
Pi (28) -. 15654E-01
Pic 30) -. 1,3181E+00

Pic 31) -. 35011E-01
Pic 33) .20875E-01
Pi (34) • 12284E-01
Pi( 40) -. 49329E000
Pi 41) -. 14124E+00

SPic 42) -.40513E-01
Pic 43) .77044E-01
Pi( 44) .47497E-01
Pic 45) .20912E-01

1 Pi( 47) -. 10790E-01
PiC 50) -. 57719E-01
Pi( 51) -. 15331E-01
Pic 60) -. 21600E+00

SPic 61) -.61845E-01
Pic 62) -. 17748E-01
Pic 63) .33733E-01
PiC 64) .20797E-01
Pi( 70) -.25275E-01
Pic 80) -.94585E-01
Pi c 81) -.27082E-01
Pi ( 83) . 14771E-01

i Pi( 90) -. 1I06SE-01
Pi(100) -. 41418E-01

a Pi(101) -. 11859E-01
Pi(120) -. 18156E-01

I:

/



MODELING RESULTS FOR TIME SERIES JJJA111.

DATA : Z = JJJA111. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

1 MEAN .13158E+01
2 AUTOREGRESSIVE 1 1 -. 50671E 00 -16.46

" 3 AUTOREGRESSIVE 1 2 -. 26687E 00 -8.67
.4 AUTOREGRESSIVE 1 4 .60035E-01 2.11
5 AUTOREGRESSIVE 2 10 .39674Eo00 9.58
6 MOVING AVERAGE 1 30 -. 13514E 00 -4.11

THE RESIDUAL STATISTICS

SUM OF SQUARES : .57848E+01 DEGREES OF FREEDOM :80
MEAN SQUARE : .59029E-02 NUMBER OF RESIDUALS : 986
R SQUARED : .30725E+00

THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF 'IODE-S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

i * Z(t) Constant + Pi(1) * Z(t-1) + Pi(2) * Z(t-2) ... + Pi(n) * Z(t-n)
[



r.
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LAG : THE Pl WEIGHT:

Constant .92142E-.00
Pic 1) .50671E,-00
Pi( 2) .26687E+00
Pi( 4) -. 60035E-01
Pi( 10) -. 29674E--00
Pi( 11) -. 15036E 00

- Pic 12) -. 79191E-01
Pi ( 14) . 17814E-01
Pi( 30) .13514E 00
Pi( 31) -. 68478E-01
Pi( 32) -.36066E-01
Pi (40) .40101E-01
Pic 41) .20320E-01
Pi (42) . 10702E-01
Pi( 60) -. 18263E-01

MODELING RESULTS FOR TIME SERIES JJJC111.

DATA Z = JJJClll. 10000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

I MEAN -. 29826E 01
2 AUTOREGRESSIVE 1 1 .84105E-01 2. 66
3 AUTOREGRESSIVE 1 2 .25509E+00 8.30
4 AUTOREGRESSIVE 1 3 .17367E100 5.49
5 AUTOREGRESSIVE 2 10 . 11135E+00 3.49

THE RESIDUAL STATISTICS

SUM OF SQUARES : .89756E-01 DEGREES OF FREEDOM 982
MEAN SQUARE : .91401E-04 NUMBER OF RESIDUALS 987
R SQUARED :. 13713E-00

- - .,.,'.. .. . - . -. ' . -



THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE ;4ST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED :N THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MCDE"S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) = Constant + Pi(1) * Z(t-1) + Pi(2) * Z(t-2) + Pi (n) * Z(t-n)

LAG 1 THE PI WEIGHT!

Constant -. 46740E 01

Pi( 1) -. 84105E-01
Pi( 2) -. 25509E 00
Pi( 3) -. 17367E+00
Pi( 10) -. 11135E+00

Pi( 12) .28405E-01
Pi( 13) •19339E-01

P MODELING RESULTS FOR TIME SERIES JJJA121.

DATA : Z = JJJA121. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

* FACTOR LAG COEFFICIENT T RATIO

1 MEAN .12344E 01
2 AUTOREGRESSIVE 1 1 -. 54072E+00 -17.60
3 AUTOREGRESSIVE 1 2 -. i27013E+00 -8.79
4 AUTOREGRESSIVE 2 10 .66750E+00 25.10
5 MOVING AVERAGE 1 20 -. 16508E+00 -4.57

THE RESIDUAL STATISTICS

SUM OF SQUARES : .29880E+01 DEGREES OF FREEDOM : 983
MEAN SQUARE : .30397E-02 NUMBER OF RESIDUALS : 988

R SQUARED .66930E+00

* • " " . • " -' ,'" " ~ ~ ~ ~ ~ ~ ~ ~ ~~. . ....- ....... ........... " - - " -;,,.. , r . a - 'i- u . ,,, ,.a 
",
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THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST

PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODE-S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

~ Z(t) s Constant + Pi(1) * Z(t-l) Pi(2) * Z(t-2) ... + Pi(n) * Z(t-n)

LAG THE PI WEIGHT:

Constant .14810E+01
PI( 1) .54072Eo00
Pi( 2) .27013E+00
Pi( 10) -. 66750E-00
Pi( 11) -. 36093E000
Pi( 12) -. 18031E+00
Pi( 20) .16508E+00
Pi( 21) -. 89262E-01
Pi( 22) -. 44592E-01
Pi( 30) .11019E+00

Pi( 31) .59582E-01
Pi( 32) .29765E-01
Pi( 40) -.27251E-O1

" Pi( 41) .14735E-01
Pi( 50) -. 18190E-01

MODELING RESULTS FOR TIME SERIES JJJC121.

DATA : Z - JJJC121. 10000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

SACKCASTING : OFF
• ~4.4.'*********4*444.**-1.,*.4**** **4**4*** * *444**4*4 ***4***4 **4*

UNIVARIATE MODEL PARAMETERS
4** ******** -**4 II*****44** 4 **.***** 4* ***4* * 4 I 41.-. 4.** 4** 41-**4-..*

FACTOR LAG COEFFICIENT T RATIO

I MEAN -. 29711E+01
2 AUTOREGRESSIVE 1 2 .14048E+00 4.45

4 3 AUTOREGRESSIVE 1 3 . 16761E+00 5.38
4 AUTOREGRESSIVE 1 4 .79626E-01 2.52
5 5 AUTOREGRESSIVE 2 10 .93544E-01 2.93
6 AUTOREGRESSIVE 2 20 .15126E+00 4.76
7 MOVING AVERAGE 1 30 - 14436E+00 -4. 44

44 4444 * * 4 4 **o4 * * * 4 * * * 4 * *- * ** * ** *444
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THE RESIDUAL STATISTICS

=== ==

SUM OF SQUARES : .12944E*00 DEGREES OF FREEDOM : 9 9
MEAN SQUARE .13358E-03 NUMBER OF RESIDUALS : 976
R SQUARED : .11919E+00

THE PI WEIGHTS

UN"VARIA7E BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST
PLUS A RANDOM SHOCK. DEFINED AS THE P1 WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODE-S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) = Constant Pi(1) * Z(t-1) * Pi(2) * Z(t-2) ... ( P(n) * Z(t-n)

LAG THE PI WEIGHT

Constant -.3992IE.01
Plc 2) -. 14048E+00
Pic 3) -. 16761Eo00
Pic 4) -. 79626E-01
Pic 10) -.93544E-01
Pi C 12) . 13141E-01
Pic 13) .15679E-01
PiC 20) -. 15126E 00
Pi( 22) .21249E-01
Pic 23) .25352E-01
Pi( 24) .12044E-01
Pi C30) . 14436E 00

SPic 32) .20280E-01
Pi( 33) .24195E-01
Pic 34) .11495E-01
Pic 40) .13504E-01
Pi 50) .21835E-01
PiC 60) -. 20839E-01

- ---.



MODEL'NG RESULTS FOR TIME SERIES JJJG211.

DATA : Z = JJJA.11. 1000. 1000 OBSERVATIONS
-- 9

DIFFERENCING ON Z • NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS
***4********************************************************** ****

FACTOR LAG COEFFICIENT T RATIO

S*.***************************************** ***********************

1 MEAN . 13154E+01
2 AUTOREGRESSIVE 1 10 .25098E+00 7.96

" 3 AUTOREGRESSIVE 1 20 . 17444E--00 5.62
4 MOVING AVERAGE 1 1 .42855E+00 13.42
5 MOVING AVERAGE 1 2 .73318E-01 2.11
6 MOVING AVERAGE 1 3 -. 90160E-01 -2.80
7 MOVING AVERAGE 2 40 -. 69039E-01 -2. 12

THE RESIDUAL STATISTICS

SUM OF SQUARES .50976E+01 DEGREES OF FREEDOM : 973
MEAN SQUARE .52391E-02 NUMBER OF RESIDUALS :980

, R SQUARED .27477E+00

*: THE PI WEIGHTS

*-. UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF T-E PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODE.S.

. THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

*. Z(t) Constant Pi (1> * Z(t-1) + Pi(2) * Z(t-2) ... + Pi r) * Z(t-r)

*" 1

. -. .- .. . .-. "., . - * ", - .. .,* i + -"



LAG THE PI WEIGHT

Constant .29814E+01
Pi( 1) -. 42855E 00

" Pi( 2) -. 25697E 00

Pi( 3) -.51387E-01
Pi( 5) .18448E-01

Pi( 6) .12376E-01
Pi( 10) -. 25130E 00
Pi( 11) -. 10787E 00
Pi( 12) -. 64681E-01
Pi( 13) -. 12971E-01

- Pi( 20) -. 17456E+00
1 Pi( 21) -. 74856E-01
Pi( i2) -. 44878E-01

1 Pi( 40) .69039E-01

Pi( 41) .29587E-01
Pi( 42) .17741E-01
Pi( 50) .17359E-01
Pi( 60) .12054E-01

i -MODELING RESULTS FOR TIME SERIES JJJC211.

DATA : Z JJJC211. 10000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

1 MEAN -. 21062E+01

2 AUTOREGRESSIVE 1 1 .10464E00 3.32
3 AUTOREGRESSIVE 1 2 .20754E.00 6.71
4 AUTOREGRESSIVE 1 3 .17823E+00 5.65

* 5 AUTOREGRESSIVE 2 t0 14339E+00 4. 46
6 AUTOREGRESSIVE 2 20 .12431E+00 3.86
7 MOVING AVERAGE 1 30 -. 10870E+00 -3.29

THE RESIDUAL STATISTICS

SUM OF SQUARES :. 10776E+00 DEGREES OF FREEDOM : 970
MEAN SQUARE : .11109E-03 NUMBER OF RESIDUALS : ?77
R SQUARED . 16005E00

. -.I . . . ., ; -. ,. - ' . ............... ...". ... .. ........ .. ... ... .... .. ....



*- THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CPAI BE EXPRESSED AS A PE:GhTED SwM OF T.iE PSS"
PLUS A RANDOM SHCCK. DEFINED AS THE PI WEIGHTS, MCDELS EXPRESSED :N 7--ESE

m 3 TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF ,"EDE"S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z!) Constant e Pi(1) * Z(t-1) + Pi(2) * Z(t-2) + Pi(n) * Z(t-r-)

LAG THE PI WEIGHT:

I"Constant -. 30905E-01
Pi( I ) -. 10464E*00

1 Pi( 2) -. 20754Eo00

I Pic 3) -. 17823E+00
Pic 10) -. 14339E00
Pi( 11) . 15004E-01

- Pi( 12) ..29759E-01
Pi( 13) .25558E-01
Pic 20) -. 12431E+00

Pi( 21) .13008E-01
Pi( 22) .23800E-01
Pi( 23) .22157E-01
Pic 30) .10870E 00

Pi C31) . 11374E-01
Pi c 32) .22560E-01

i Pi C 33) • 19374E-01
Pic 40) .15387E-01
Pic 50) .13513E-01

I Pic 60) -. 11816E-01

MODELING RESULTS FOR TIME SERIES JJJA221.

DATA : Z = JJJA221. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

"- - BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

1 1 MEAN -. 13395E+01
2 AUTOREGRESSIVE 1 2 .11956E000 3.65
3 AUTOREGRESSIVE 1 3 .29663E+00 9.73
4 AUTOREGRESSIVE 1 4 .20041E00 6.58
5 AUTOREGRESSIVE 2 10 .49611E 00 16.34
6 MOVING AVERAGE I 1 .46162E+00 14.44
7 MOVING AVERAGE 2 30 -. 23880E-00 -7. 47



THE RESIDUAL STATISTICS

SUM OF SQUARES : .58201E+01 DEGREES OF FREEDCM : 37S

MEAN SQUARE : .59449E-02 NUMBER OF RESIDUALS

R SQUARED : .56236E+00

V THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MCDE-S.

V

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) Constant * Pi(1) * Z(t-1) + Pi(2) * Z(t-2) +. + Pi(n) * Z(t-ri)

LAG THE P1 WEIGHT

1Constarnt -. 362893E+01
Pi( 1) -. 46162E 00

Pi( 2) -. 33266E 00
Pi( 3) -. 45019E 00
Pi( 4) -. 40822E+00
Pi( 5) -. 18844E 00

Pi( 6) -. 86990E-01
Pi( 7) -. 40157E-01
Pi( 8) -. 18537E-01

iPi( 10) -. 50006E 00

Pi( 11) -. 23084E+00
Pi( 12) -. 47245E-01
Pi( 13) .12535E+00

Pi( 14) . 15729E-00
Pi( 15) .72608E-01

IV Pi( 16) .33517E-01
Pi( 17) .15472E-01
Pi( 30) .23880E+00
Pi( 31) .11023E+00
Pi( 32) .79437E-01
Pi( 33) .10750E 00
Pi( 34) .97482E-01
Pi( 35) .45000E-01
Pi( 36) .20773E-01
Pi( 40) .11941E+00
Pi( 41) .55124E-01

Pi( 42) .11282E-01
* Pi( 43) -. 29933E-01

Pi( 44) -. 37560E-01
Pi( 45) -. 17339E-01
Pi( 60) -. 57024E-01
PuC 61) -. 26323E-01
Pi( 62) -. 18969E-01
Pl( 63) -. 25671E-01

P,( 64) -. 23278E-01
Pi( 65) -. 10746E-01
Pi( 70) -. 28516E-01
Pi( 71) -. 13163E-01

Pl( 90) .13617E-01



MODELING RESULTS FOR TIME SERIES JJJC22I1.

DATA Z , JJJC221. 10000. 1000 OBSERVATIONS

DIFFERENCING ON Z z NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

1 MEAN -. 19154E+01
2 AUTOREGRESSIVE 1 2 . 14333E+00 4.58
3 AUTOREGRESSIVE 1 3 . 13359E-f-00 4.27
4 AUTOREGRESSIVE 2 10 .71010E-01 2.23
5 MOVING AVERAGE 1 70 -. 86921E-01 -2.65

THE RESIDUAL STATISTICS

* SUM OF SQUARES : 129r71E+00 DEGREES OF FREEDOM : 382
MEAN SQUARE : .13209E-03 -. NUMBER OF RESIDUALS : 987
R SQUARED : .52182E-01

THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST
* PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE

TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODELS.

4. THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) = Constant + Pi() * Z(t-1) + Pi(2) * Z(t-2) ... Pi(n) * Z(t-n)

LAG : THE PI WEIGHT:

Constant :-.23407E+01
Pi( 2) -. 14333E+00
Pi( 3) -. 13359E 00
Pi( 10) -. 71010E-01

Pi( 12) .10178E-01
Pi( 70) .86921E-01

Pi( 72) .12459E-01
Pi( 73) .11612E-01

- - -



" MODELING RESULTS FOR TIME SERIES JJJA212.

DATA : Z = JJJA212. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z - NONE

BACKCASTING : OFF

UNIVARrATE MODEL PARAMETERS

I MEAN -. 53939E*01
2 AUTOREGRESSIVE 1 1 -.58550E 00 -19.76
a AUTOREGRESSIVE 1 2 -. 37125E+00 -12.54

4 AUTOREGRESSIVE 2 10 .89172E.00 45.31
5 MOVING AVERAGE 1 10 .49908E+00 13.08

THE RESIDUAL STATISTICS

SUM OF SQUARES .58862E+01 DEGREES OF FREEDOM 383
MEAN SQUARE : .59880E-02 NUMBER OF RESIDUALS :88

* R SQUARED : .66509E+00

THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SLM OF T.,E PAS7
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE

* TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF ,MCDE.S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE Pi WEIGHTS IS

Z(t) Constant + Pi(1) * Z(t-1) + Pi(2) * Z(t-2) ... Pi(n) * Z(t-r)

9.o'°



LAG THE Pl WEIGHT

Constant -. 19254E+02
Pi( 1) .58550E+00

,.Pi( a) .37125E-400
Pi (10) -. 13908E01
Pi( 11) -.22989E+00
Pi( 12) .14577E 00
Pi( 20) -.69411E 00
Pi( 21) .11473E-00

.Pi ( 22) -. 72749E-01
Pi( 30) -. 34641E+00
Pi( 31) -. 57260E-01
Pi( 32) Z-.36307E-01
Pi( 40) -. 17289Et-00

I Pi( 41) -. 28577E-01
Pi( 42) -. 18120E-01
Pi( 50) -.86283E-01

S Pi( 51) -. i4262E-01
*.Pi( 60) -. 43062E-01

Pi.( 70) -.21491E-01
Pi( 80) -. 10726E-01

am =

MODELING RESULTS FOR TIME SERIES JJJC212.
-- ********* ***************************************** *******

DATA : Z = JJJC212. 100. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING :OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

1 MEAN -. 60968E 01
2 AUTOREGRESSIVE 1 1 .10810E+00 3.37
3 AUTOREGRESSIVE 1 2 .25623E+00 8.32
4 AUTOREGRESSIVE 1 3 .14199E+00 4.49
5 AUTOREGRESSIVE 2 10 .24591E.00 7.75
6 AUTOREGRESSIVE 2 20 .13294E+00 4.18
7 MOVING AVERAGE 1 50 -. 84624E-01 -2. 53

THE RESIDUAL STATISTICS

SUM OF SQUARES : .73506E+03 DEGREES OF FREEDOM : 970
MEAN SQUARE : .75779E+00 NUMBER OF RESIDUALS : 977
R SQUARED :. 18459E+00



K I THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED S'M OF TmE PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED :N Th7ESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPqRISON TO OTHER TYPES CF MCDE..S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) = Constant + Pi(1) * Z(t-1) + Pi(2) * Z(t-2) + Pi(n) * Z(t-n)

LAG THE PI WEIGHT:

Constant7 -. 95la5E+01
Pi( 1) -. 10810E+00
Pi( 2) -. 25623E+00
Pi( 3) -. 14199E+00

Pi( 10) -. 24591E600
Pi( II) .26583E-01
Pi( 12) .63011E-0

Pi( 13) .34917E-01
P( 20) -. 13294E+00
Pi( 21) .14370E-01
Pi( 22) .34063E-01
Pi( 23) . 18876E-01

Pi( 50) .84624E-01
Pi( 52) .21684E-01
Pi( 53) .12016E-01

Pi( 60) .2081OE-01
Pi( 70) .11250E-01

.

- MODELING RESULTS FOR TIME SERIES JJJA222.

DATA Z = JJJA222. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

, LUNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

I MEAN -. 58224E+01
2 AUTOREGRESSIVE 1 1 .5a1O5E-01 1.86
3 AUTOREGRESSIVE 1 3 .20355E 00 6.47
4 AUTOREGRESSIVE 2 10 .87782E+00 45.61
Z MOVING AVERAGE 1 2 -. 13798E+00 -4.36
6 MOVING AVERAGE 2 10 .-29425E+00 7.61



THE RESIDUAL STATISTICS

SUM OF SQUARES :.49844E+00 DEGREES OF FREEDOM :981
*MEAN SQUARE : .50810E-0.3 NUMBER OF RESIDUALS z 987

R SQUARED :.62802E+i00

THE PI WEIGHTS

* UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
7 ERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODE..S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) =Constant + Pi (1) Z Z(t-1) + Pi (2) Z Z(t-2).. + Pi (n) * Z(t-ri)

p

LG :TEPI WEIGHT:

Constant : .13a45E-102

Pi( 1) V-.58105E-01
UPi( 2) : .13798E+s00

P-iC 3) : .19533E-+00

Pi( 4) :-.19028E-01 I
Pi( 5) : .2SS9E-01
Pi( 10) -. 11720E*01
Pi( 11) .338Z37E-01
Pi( 12) 1 .16171E-s00
Pi( 13) : . 11411E+00
Pi( 14) 1-.22313E-01
Pi( 15) 1-.15745E-01
Pi( 20) :-.3448ZE+00
Pj( 1) . I00lSE-01
Pl( 22) 1 .4757SE-01
Pi( 23) 1 .335SSE-01
Pi( 30) 1-.10147E+00
Pi( 32) .140OOE-01
Pic 40) 1-.29862E-01

[



- MODELING RESULTS FOR TIME SERIES JJJC222.

DATA Z = JJJC222. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z :NONE

BACKCAST INS OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

1 MEAN .73183E+00
2 AUTOREGRESSIVE 1 1 -. 97088E-01 -3.05
:3 AUTOREGRESSIVE 1 2 .1843SE+*00 5. 87
4 AUTOREGRESSIVE 1 a .17600E+00 5.53
5 AUTOREGRESSIVE 2 10 .21626E-000 6.75
6 AUTOREGRESSIVE 2 30 .15128E+O00 4.74
7 MOVING AVERAGE 1 20 -. 152S0E.*00 -4.62

THE RESIDUAL STATISTICS

*SUM OF SQUARES :. 1113ZSE+02 DEGREES OF FREEDOM :9160
*MEAN SQUARE : .11597E-01 NUMBER OF RESIDUALS :967
*R SQUARED :. 162 19E+00



THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED. AS A WEIGHTED SUM OF THE PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE

TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODE_S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) = Constant + Pi(1) * Z(t-1) + Pi(2) * Z(t-2) ... + Pi(n) * Z(t-n)

m-

LAG THE PI WEIGHT,

: Constant .97376E+00
Pi( 1) .97088E-01
Pi( 2) -. 18436E+00
Pi( 3) -. 17600E-00
Pi( 10) -. 21626E+00
Pi( 11) -. 20996E-01
Pi( 12) .39869E-01
Pi( 13) .38060E-01
Pi( 20) .15290E+00
Pi( 21) -. 14845E-01
Pi( 22) .28188E-01
Pi( 23) .26910E-01

1 Pi( 30) -. 11821E+00
1 Pi( 31) 1 -. 11477E-01
Pi( 32) .21794E-01

Pi( 33) .20805E-01
Pi( 40) -. 23378E-01
Pi( 50) .18075E-01

MODELING RESULTS FOR TIME SERIES JJJA112.

DATA : Z = JJJA112. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

• . *4*444 *****4**4.****.4******4** **********4***4**************

1 MEAN -. 67906E-01
2 AUTOREGRESSIVE 1 1 -.26564E+00 -8.68
3 AUTOREGRESSIVE 2 10 .52048E 00 17.31
4 MOVING AVERAGE 1 20 -. 17211E+00 -4.96

!-



THE RESIDUAL STATISTICS

SUM OF SQUARES : . 19409E+01 DEGREES OF FREEDOM :
MEAN SQUARE : .19705E-02 NUMBER OF RESIDUALS : 989

R SQUARED : .36941E+00

Sqr THE PI WEIGHTS

tN:VAR:ATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODELS.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) Constant Pi(1) * Z(t-1) Pi(2) * Z(t-2) ... Pi(n) * Z(t-r)

LAG 1 THE PI WEIGHT:

Constant -.80709E+01
Pi( 1) : .26564E+00

Pi( 10) -.52048E400
Pi( 11) -. 13826E+00

i Pi( 20) .17211E+00
Pi( 21) -. 45719E-01
Pi( 30) .89580E-01

* Pi( 31) .23796E-01
Pi( 40) -. 296Z2E-01
Pi( 50) -. 15418E-01
---

r .



MODEL:NG RESULTS FOR TIME SERIES JJJC112.

DATA : Z = JJJC12. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

I MEAN .631 13E01
2 AUTOREGRESSIVE 1 1 .79309E-01 2.48

" 3 AUTOREGRESSIVE 1 2 .21900E+00 7.04
4 AUTOREGRESSIVE 1 3 .16608E+00 5.19

* 5 AUTOREGRESSIVE 2 10 26382E- -00 8. 15
, -" -. 6 AUTOREGRESSIVE 2 20 .20279E+00 6.29

7 MOVING AVERAGE 1 30 -. 83247E-01 -2.44

THE RESIDUAL STATISTICS

SUM OF SQUARES : .74056E+01 DEGREES OF FREEDOM : 970
* MEAN SQUARE : .76347E-02 NUMBER OF RESIDUALS : 977

R SQUARED .22761E400

THE PI WEIGHTS.

NIVAR:ATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF T-E PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODELS.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) = Constant Pi(l) * Z(t-1) Pi(2) * Z(t-2) ... + Pi(n) * Z(t-n)

i........... .... .. :. i ,=.,,,.,-



"U LAGTHiE-P WIGHT:

Constant .99881 E01
Pi( ) -. 79309E-01
Pi( 2) -. 21900E00
Pi( ( -. 16608E-00

: Pi( 10) -. 26382E 00

Pi( 11) .20923E-01
Pi( 12) .57775E-01
Pi( 13) .43816E-01
Pi( 20) -. 20279E00
Pi( 21) .16083E-01
Pi( 22) .44410E-01
Pi( 23) .33680E-01

Pi( 30) .83247E-01
Pi( 32) a.18231E-01
Pi( 33) .13826E-01
Pi( 40) .21962E-01

* Pi( 50) .16881E-01

MODELING RESULTS FOR TIME SERIES JJJA122.

DATA : Z - JJJA122. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

I MEAN -. 68009E01
2 AUTOREGRESSIVE 1 10 .64461E 00 26. 11
Z2 MOVING AVERAGE 1 1 .26997E00 8.78
4 MOVING AVERAGE 2 50 .11061E400 3.34

THE RESIDUAL STATISTICS

SUM OF SQUARES . 18079E.01 DEGREES OF FREEDOM : 986
MEAN SQUARE .18336E-02 NUMBER OF RESIDUALS : 990

R qrjLIARFn -!qAr#
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Q r THE PI WEIGHTS

Z.NIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF T-E PAST
PLUS A RANDOM SHOCK. DEFINED AS THE PI WEIGHTS, MODELS EXPRESSED 'N THESEg TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODE.S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS :

Z(t) = Constant + Pi(1) * Z(t-1) + Pi(2) * Z(t-2) ... P1(n) * Z(t-ri)

LAG THE PI WEIGHT:

Consan t -. 17226E 02
Pi( 1) -. 26997E+00
Pi( 2) -. 72886E-01
Pi( 3) -. 19677E-01
Pi( 10) -. 64461E 00

Pi( 11) -. 17403E+00
Pi( 12) 1 -. 46983E-01

Pi( 13) -. 12684E-01
Pi( 50) -. 11061E 00
Pi( 51) 1 -. 29861E-01
Pi( 60) -. 71298E-01

Pi( 61) -. 19248E-01
Pi(100) -. 12234E-01

MODELING RESULTS FOR TIME SERIES JJJC122.

DATA : Z - JJJC122. 1000. 1000 OBSERVATIONS

DIFFERENCING ON Z : NONE

BACKCASTING : OFF
4

UNIVARIATE MODEL PARAMETERS

FACTOR LAG COEFFICIENT T RATIO

1 MEAN .66319E 01
2 AUTOREGRESSIVE 1 1 -. 12195E+00 -3.88
3 AUTOREGRESSIVE 1 2 . 15636E 00 4.99
4 AUTOREGRESSIVE 1 3 .18918E+00 6.01
5 AUTOREGRESSIVE 2 10 .13376E+00 4.20
6 AUTOREGRESSIVE 2 20 .15959E-00 5.00
7 MOVING AVERAGE 1 30 -. 12349E-00 -3.77

44* 4 * * 4 4 * * 4 ** * * * * * * * * * * ***!* * * * ~ 4 4

4/

,, ,, . .. . .. ... . . . .. ,. _.



THE RESIDUAL STATISTICS

SUM OF SQUARES : .14183E+02 DEGREES OF FREEDOM : 970
MEAN SQUARE : .14622E-01 NUMBER OF RESIDUALS : 977
R SQUARED . 12877Eo00

THE PI WEIGHTS

UNIVARIATE BOX-JENKINS MODELS CAN BE EXPRESSED AS A WEIGHTED SUM OF THE PAST
PLUS A RANDOM SHOCK. DEFINED AS "HE PI WEIGHTS, MODELS EXPRESSED IN THESE
TERMS ARE USEFUL FOR FORECASTING AND/OR COMPARISON TO OTHER TYPES OF MODE.S.

THE GENERAL FORM OF THE MODEL EXPRESSED BY THE PI WEIGHTS IS

Z(t) Constant + Pi(1) * Z(t-1) + Pi(2) * Z(t-2) ... + Pi(n) * Z(t-r,)

I

LAG : THE PI WEIGHT:

Constant .85672E+01
Pi( 1) .12195E+00
Pi( 2) -. 15636E+00
Pi( 3) -. 18918E+00
Pi( 10) -. 13376E*00
Pi( 11) -. 16312E-01
Pi( 12) .20915E-o
Pi( 13) .25304E-01
Pi( 20) -. 15959E+00
Pi( 21) -. 19462E-01
Pi( 22) .24953E-01
Pi( 23) .30190E-01
Pi( 30) . 12349E00"
Pi 31) -. 15060E-01
Pi( 32) .19309E-01
Pi( 33) 32362E-01
Pi 40) .16518E-01
Pi( 50) . 19707E-01

Pi( 60) -. 15250E-01

I:. ":4
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